1 Diffusion-Based Electrocardiography Noise Quantification via Anomaly Detection Electrocardiography (ECG) signals are often degraded by noise, which complicates diagnosis in clinical and wearable settings. This study proposes a diffusion-based framework for ECG noise quantification via reconstruction-based anomaly detection, addressing annotation inconsistencies and the limited generalizability of conventional methods. We introduce a distributional evaluation using the Wasserstein-1 distance (W_1), comparing the reconstruction error distributions between clean and noisy ECGs to mitigate inconsistent annotations. Our final model achieved robust noise quantification using only three reverse diffusion steps. The model recorded a macro-average W_1 score of 1.308 across the benchmarks, outperforming the next-best method by over 48%. External validations demonstrated strong generalizability, supporting the exclusion of low-quality segments to enhance diagnostic accuracy and enable timely clinical responses to signal degradation. The proposed method enhances clinical decision-making, diagnostic accuracy, and real-time ECG monitoring capabilities, supporting future advancements in clinical and wearable ECG applications. 7 authors · Jun 13
1 Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving reasoning over quantities, especially arithmetics. This has particular relevance in scientific datasets where combinations of text and numerical data are abundant. One fundamental limitation is the nature of the CE loss, which assumes a nominal (categorical) scale and thus cannot convey proximity between generated number tokens. As a remedy, we here present two versions of a number token loss. The first is based on an L_p loss between the ground truth token value and the weighted sum of the predicted class probabilities. The second loss minimizes the Wasserstein-1 distance between the distribution of the predicted output probabilities and the ground truth distribution. These regression-like losses can easily be added to any language model and extend the CE objective during training. We compare the proposed schemes on a mathematics dataset against existing tokenization, encoding, and decoding schemes for improving number representation in language models. Our results reveal a significant improvement in numerical accuracy when equipping a standard T5 model with the proposed loss schemes. 9 authors · Nov 4, 2024
- Generative Sliced MMD Flows with Riesz Kernels Maximum mean discrepancy (MMD) flows suffer from high computational costs in large scale computations. In this paper, we show that MMD flows with Riesz kernels K(x,y) = - |x-y|^r, r in (0,2) have exceptional properties which allow their efficient computation. We prove that the MMD of Riesz kernels, which is also known as energy distance, coincides with the MMD of their sliced version. As a consequence, the computation of gradients of MMDs can be performed in the one-dimensional setting. Here, for r=1, a simple sorting algorithm can be applied to reduce the complexity from O(MN+N^2) to O((M+N)log(M+N)) for two measures with M and N support points. As another interesting follow-up result, the MMD of compactly supported measures can be estimated from above and below by the Wasserstein-1 distance. For the implementations we approximate the gradient of the sliced MMD by using only a finite number P of slices. We show that the resulting error has complexity O(d/P), where d is the data dimension. These results enable us to train generative models by approximating MMD gradient flows by neural networks even for image applications. We demonstrate the efficiency of our model by image generation on MNIST, FashionMNIST and CIFAR10. 4 authors · May 19, 2023
- Information-Theoretic Generalization Bounds for Deep Neural Networks Deep neural networks (DNNs) exhibit an exceptional capacity for generalization in practical applications. This work aims to capture the effect and benefits of depth for supervised learning via information-theoretic generalization bounds. We first derive two hierarchical bounds on the generalization error in terms of the Kullback-Leibler (KL) divergence or the 1-Wasserstein distance between the train and test distributions of the network internal representations. The KL divergence bound shrinks as the layer index increases, while the Wasserstein bound implies the existence of a layer that serves as a generalization funnel, which attains a minimal 1-Wasserstein distance. Analytic expressions for both bounds are derived under the setting of binary Gaussian classification with linear DNNs. To quantify the contraction of the relevant information measures when moving deeper into the network, we analyze the strong data processing inequality (SDPI) coefficient between consecutive layers of three regularized DNN models: Dropout, DropConnect, and Gaussian noise injection. This enables refining our generalization bounds to capture the contraction as a function of the network architecture parameters. Specializing our results to DNNs with a finite parameter space and the Gibbs algorithm reveals that deeper yet narrower network architectures generalize better in those examples, although how broadly this statement applies remains a question. 3 authors · Apr 3, 2024
- Accelerating Sinkhorn Algorithm with Sparse Newton Iterations Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast O(n^2) per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein W_1, W_2 distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix. 7 authors · Jan 20, 2024
- Sample Complexity of Probability Divergences under Group Symmetry We rigorously quantify the improvement in the sample complexity of variational divergence estimations for group-invariant distributions. In the cases of the Wasserstein-1 metric and the Lipschitz-regularized alpha-divergences, the reduction of sample complexity is proportional to an ambient-dimension-dependent power of the group size. For the maximum mean discrepancy (MMD), the improvement of sample complexity is more nuanced, as it depends on not only the group size but also the choice of kernel. Numerical simulations verify our theories. 4 authors · Feb 3, 2023
- Complexity of Block Coordinate Descent with Proximal Regularization and Applications to Wasserstein CP-dictionary Learning We consider the block coordinate descent methods of Gauss-Seidel type with proximal regularization (BCD-PR), which is a classical method of minimizing general nonconvex objectives under constraints that has a wide range of practical applications. We theoretically establish the worst-case complexity bound for this algorithm. Namely, we show that for general nonconvex smooth objectives with block-wise constraints, the classical BCD-PR algorithm converges to an epsilon-stationary point within O(1/epsilon) iterations. Under a mild condition, this result still holds even if the algorithm is executed inexactly in each step. As an application, we propose a provable and efficient algorithm for `Wasserstein CP-dictionary learning', which seeks a set of elementary probability distributions that can well-approximate a given set of d-dimensional joint probability distributions. Our algorithm is a version of BCD-PR that operates in the dual space, where the primal problem is regularized both entropically and proximally. 2 authors · Jun 4, 2023
1 Interpolation for Robust Learning: Data Augmentation on Geodesics We propose to study and promote the robustness of a model as per its performance through the interpolation of training data distributions. Specifically, (1) we augment the data by finding the worst-case Wasserstein barycenter on the geodesic connecting subpopulation distributions of different categories. (2) We regularize the model for smoother performance on the continuous geodesic path connecting subpopulation distributions. (3) Additionally, we provide a theoretical guarantee of robustness improvement and investigate how the geodesic location and the sample size contribute, respectively. Experimental validations of the proposed strategy on four datasets, including CIFAR-100 and ImageNet, establish the efficacy of our method, e.g., our method improves the baselines' certifiable robustness on CIFAR10 up to 7.7%, with 16.8% on empirical robustness on CIFAR-100. Our work provides a new perspective of model robustness through the lens of Wasserstein geodesic-based interpolation with a practical off-the-shelf strategy that can be combined with existing robust training methods. 7 authors · Feb 3, 2023
1 Geometry of Sample Spaces In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality. 4 authors · Oct 15, 2020
- Federated Wasserstein Distance We introduce a principled way of computing the Wasserstein distance between two distributions in a federated manner. Namely, we show how to estimate the Wasserstein distance between two samples stored and kept on different devices/clients whilst a central entity/server orchestrates the computations (again, without having access to the samples). To achieve this feat, we take advantage of the geometric properties of the Wasserstein distance -- in particular, the triangle inequality -- and that of the associated {\em geodesics}: our algorithm, FedWad (for Federated Wasserstein Distance), iteratively approximates the Wasserstein distance by manipulating and exchanging distributions from the space of geodesics in lieu of the input samples. In addition to establishing the convergence properties of FedWad, we provide empirical results on federated coresets and federate optimal transport dataset distance, that we respectively exploit for building a novel federated model and for boosting performance of popular federated learning algorithms. 3 authors · Oct 3, 2023
- Augmented Sliced Wasserstein Distances While theoretically appealing, the application of the Wasserstein distance to large-scale machine learning problems has been hampered by its prohibitive computational cost. The sliced Wasserstein distance and its variants improve the computational efficiency through the random projection, yet they suffer from low accuracy if the number of projections is not sufficiently large, because the majority of projections result in trivially small values. In this work, we propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs), constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks. It is derived from a key observation that (random) linear projections of samples residing on these hypersurfaces would translate to much more flexible nonlinear projections in the original sample space, so they can capture complex structures of the data distribution. We show that the hypersurfaces can be optimized by gradient ascent efficiently. We provide the condition under which the ASWD is a valid metric and show that this can be obtained by an injective neural network architecture. Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems. 3 authors · Jun 15, 2020
- Sliced Wasserstein Estimation with Control Variates The sliced Wasserstein (SW) distances between two probability measures are defined as the expectation of the Wasserstein distance between two one-dimensional projections of the two measures. The randomness comes from a projecting direction that is used to project the two input measures to one dimension. Due to the intractability of the expectation, Monte Carlo integration is performed to estimate the value of the SW distance. Despite having various variants, there has been no prior work that improves the Monte Carlo estimation scheme for the SW distance in terms of controlling its variance. To bridge the literature on variance reduction and the literature on the SW distance, we propose computationally efficient control variates to reduce the variance of the empirical estimation of the SW distance. The key idea is to first find Gaussian approximations of projected one-dimensional measures, then we utilize the closed-form of the Wasserstein-2 distance between two Gaussian distributions to design the control variates. In particular, we propose using a lower bound and an upper bound of the Wasserstein-2 distance between two fitted Gaussians as two computationally efficient control variates. We empirically show that the proposed control variate estimators can help to reduce the variance considerably when comparing measures over images and point-clouds. Finally, we demonstrate the favorable performance of the proposed control variate estimators in gradient flows to interpolate between two point-clouds and in deep generative modeling on standard image datasets, such as CIFAR10 and CelebA. 2 authors · Apr 30, 2023
- Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals When dealing with electro or magnetoencephalography records, many supervised prediction tasks are solved by working with covariance matrices to summarize the signals. Learning with these matrices requires using Riemanian geometry to account for their structure. In this paper, we propose a new method to deal with distributions of covariance matrices and demonstrate its computational efficiency on M/EEG multivariate time series. More specifically, we define a Sliced-Wasserstein distance between measures of symmetric positive definite matrices that comes with strong theoretical guarantees. Then, we take advantage of its properties and kernel methods to apply this distance to brain-age prediction from MEG data and compare it to state-of-the-art algorithms based on Riemannian geometry. Finally, we show that it is an efficient surrogate to the Wasserstein distance in domain adaptation for Brain Computer Interface applications. 7 authors · Mar 10, 2023
1 Dataset Distillation via the Wasserstein Metric Dataset Distillation (DD) emerges as a powerful strategy to encapsulate the expansive information of large datasets into significantly smaller, synthetic equivalents, thereby preserving model performance with reduced computational overhead. Pursuing this objective, we introduce the Wasserstein distance, a metric grounded in optimal transport theory, to enhance distribution matching in DD. Our approach employs the Wasserstein barycenter to provide a geometrically meaningful method for quantifying distribution differences and capturing the centroid of distribution sets efficiently. By embedding synthetic data in the feature spaces of pretrained classification models, we facilitate effective distribution matching that leverages prior knowledge inherent in these models. Our method not only maintains the computational advantages of distribution matching-based techniques but also achieves new state-of-the-art performance across a range of high-resolution datasets. Extensive testing demonstrates the effectiveness and adaptability of our method, underscoring the untapped potential of Wasserstein metrics in dataset distillation. 7 authors · Nov 30, 2023
- Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances The Sliced-Wasserstein distance (SW) is a computationally efficient and theoretically grounded alternative to the Wasserstein distance. Yet, the literature on its statistical properties -- or, more accurately, its generalization properties -- with respect to the distribution of slices, beyond the uniform measure, is scarce. To bring new contributions to this line of research, we leverage the PAC-Bayesian theory and a central observation that SW may be interpreted as an average risk, the quantity PAC-Bayesian bounds have been designed to characterize. We provide three types of results: i) PAC-Bayesian generalization bounds that hold on what we refer as adaptive Sliced-Wasserstein distances, i.e. SW defined with respect to arbitrary distributions of slices (among which data-dependent distributions), ii) a principled procedure to learn the distribution of slices that yields maximally discriminative SW, by optimizing our theoretical bounds, and iii) empirical illustrations of our theoretical findings. 4 authors · Jun 7, 2022
- Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic simulations, rendering, and reconstruction. However, defining an efficient discrepancy between predicted and target meshes remains an open problem. A prevalent approach in current deep learning is the set-based approach which measures the discrepancy between two surfaces by comparing two randomly sampled point-clouds from the two meshes with Chamfer pseudo-distance. Nevertheless, the set-based approach still has limitations such as lacking a theoretical guarantee for choosing the number of points in sampled point-clouds, and the pseudo-metricity and the quadratic complexity of the Chamfer divergence. To address these issues, we propose a novel metric for learning mesh deformation. The metric is defined by sliced Wasserstein distance on meshes represented as probability measures that generalize the set-based approach. By leveraging probability measure space, we gain flexibility in encoding meshes using diverse forms of probability measures, such as continuous, empirical, and discrete measures via varifold representation. After having encoded probability measures, we can compare meshes by using the sliced Wasserstein distance which is an effective optimal transport distance with linear computational complexity and can provide a fast statistical rate for approximating the surface of meshes. To the end, we employ a neural ordinary differential equation (ODE) to deform the input surface into the target shape by modeling the trajectories of the points on the surface. Our experiments on cortical surface reconstruction demonstrate that our approach surpasses other competing methods in multiple datasets and metrics. 6 authors · May 27, 2023
1 PAC-Bayesian Generalization Bounds for Adversarial Generative Models We extend PAC-Bayesian theory to generative models and develop generalization bounds for models based on the Wasserstein distance and the total variation distance. Our first result on the Wasserstein distance assumes the instance space is bounded, while our second result takes advantage of dimensionality reduction. Our results naturally apply to Wasserstein GANs and Energy-Based GANs, and our bounds provide new training objectives for these two. Although our work is mainly theoretical, we perform numerical experiments showing non-vacuous generalization bounds for Wasserstein GANs on synthetic datasets. 3 authors · Feb 17, 2023
1 Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs Collections of probability distributions arise in a variety of applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions can be defined over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of distributions over such general domains. To this end, we propose the intrinsic slicing construction that yields a novel class of Wasserstein distances on manifolds and graphs. These distances are Hilbert embeddable, allowing us to reduce the distribution collection comparison problem to a more familiar mean testing problem in a Hilbert space. We provide two testing procedures one based on resampling and another on combining p-values from coordinate-wise tests. Our experiments in various synthetic and real data settings show that the resulting tests are powerful and the p-values are well-calibrated. 2 authors · Oct 28, 2020
- Second-Order Uncertainty Quantification: A Distance-Based Approach In the past couple of years, various approaches to representing and quantifying different types of predictive uncertainty in machine learning, notably in the setting of classification, have been proposed on the basis of second-order probability distributions, i.e., predictions in the form of distributions on probability distributions. A completely conclusive solution has not yet been found, however, as shown by recent criticisms of commonly used uncertainty measures associated with second-order distributions, identifying undesirable theoretical properties of these measures. In light of these criticisms, we propose a set of formal criteria that meaningful uncertainty measures for predictive uncertainty based on second-order distributions should obey. Moreover, we provide a general framework for developing uncertainty measures to account for these criteria, and offer an instantiation based on the Wasserstein distance, for which we prove that all criteria are satisfied. 4 authors · Dec 1, 2023
- Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made important advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another interesting type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. For low-rank matrices the Hessian of this loss can theoretically blow up, which creates challenges to analyze convergence of optimizaton methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss and convergence results for finite step size gradient descent under certain assumptions on the initial weights. 4 authors · Mar 6, 2023
1 On the Generalization of Wasserstein Robust Federated Learning In federated learning, participating clients typically possess non-i.i.d. data, posing a significant challenge to generalization to unseen distributions. To address this, we propose a Wasserstein distributionally robust optimization scheme called WAFL. Leveraging its duality, we frame WAFL as an empirical surrogate risk minimization problem, and solve it using a local SGD-based algorithm with convergence guarantees. We show that the robustness of WAFL is more general than related approaches, and the generalization bound is robust to all adversarial distributions inside the Wasserstein ball (ambiguity set). Since the center location and radius of the Wasserstein ball can be suitably modified, WAFL shows its applicability not only in robustness but also in domain adaptation. Through empirical evaluation, we demonstrate that WAFL generalizes better than the vanilla FedAvg in non-i.i.d. settings, and is more robust than other related methods in distribution shift settings. Further, using benchmark datasets we show that WAFL is capable of generalizing to unseen target domains. 5 authors · Jun 3, 2022
- Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel We propose conditional flows of the maximum mean discrepancy (MMD) with the negative distance kernel for posterior sampling and conditional generative modeling. This MMD, which is also known as energy distance, has several advantageous properties like efficient computation via slicing and sorting. We approximate the joint distribution of the ground truth and the observations using discrete Wasserstein gradient flows and establish an error bound for the posterior distributions. Further, we prove that our particle flow is indeed a Wasserstein gradient flow of an appropriate functional. The power of our method is demonstrated by numerical examples including conditional image generation and inverse problems like superresolution, inpainting and computed tomography in low-dose and limited-angle settings. 6 authors · Oct 4, 2023
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating Direction Method of Multipliers Many machine learning applications require operating on a spatially distributed dataset. Despite technological advances, privacy considerations and communication constraints may prevent gathering the entire dataset in a central unit. In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers, which is commonly used in the optimization literature due to its fast convergence. In contrast to distributed optimization, distributed sampling allows for uncertainty quantification in Bayesian inference tasks. We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art. For our theoretical results, we use convex optimization tools to establish a fundamental inequality on the generated local sample iterates. This inequality enables us to show convergence of the distribution associated with these iterates to the underlying target distribution in Wasserstein distance. In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods. 5 authors · Jan 28, 2024
- A Gromov--Wasserstein Geometric View of Spectrum-Preserving Graph Coarsening Graph coarsening is a technique for solving large-scale graph problems by working on a smaller version of the original graph, and possibly interpolating the results back to the original graph. It has a long history in scientific computing and has recently gained popularity in machine learning, particularly in methods that preserve the graph spectrum. This work studies graph coarsening from a different perspective, developing a theory for preserving graph distances and proposing a method to achieve this. The geometric approach is useful when working with a collection of graphs, such as in graph classification and regression. In this study, we consider a graph as an element on a metric space equipped with the Gromov--Wasserstein (GW) distance, and bound the difference between the distance of two graphs and their coarsened versions. Minimizing this difference can be done using the popular weighted kernel K-means method, which improves existing spectrum-preserving methods with the proper choice of the kernel. The study includes a set of experiments to support the theory and method, including approximating the GW distance, preserving the graph spectrum, classifying graphs using spectral information, and performing regression using graph convolutional networks. Code is available at https://github.com/ychen-stat-ml/GW-Graph-Coarsening . 4 authors · Jun 15, 2023
- Quasi-Monte Carlo for 3D Sliced Wasserstein Monte Carlo (MC) integration has been employed as the standard approximation method for the Sliced Wasserstein (SW) distance, whose analytical expression involves an intractable expectation. However, MC integration is not optimal in terms of absolute approximation error. To provide a better class of empirical SW, we propose quasi-sliced Wasserstein (QSW) approximations that rely on Quasi-Monte Carlo (QMC) methods. For a comprehensive investigation of QMC for SW, we focus on the 3D setting, specifically computing the SW between probability measures in three dimensions. In greater detail, we empirically evaluate various methods to construct QMC point sets on the 3D unit-hypersphere, including the Gaussian-based and equal area mappings, generalized spiral points, and optimizing discrepancy energies. Furthermore, to obtain an unbiased estimator for stochastic optimization, we extend QSW to Randomized Quasi-Sliced Wasserstein (RQSW) by introducing randomness in the discussed point sets. Theoretically, we prove the asymptotic convergence of QSW and the unbiasedness of RQSW. Finally, we conduct experiments on various 3D tasks, such as point-cloud comparison, point-cloud interpolation, image style transfer, and training deep point-cloud autoencoders, to demonstrate the favorable performance of the proposed QSW and RQSW variants. 3 authors · Sep 20, 2023
1 Variational Wasserstein gradient flow Wasserstein gradient flow has emerged as a promising approach to solve optimization problems over the space of probability distributions. A recent trend is to use the well-known JKO scheme in combination with input convex neural networks to numerically implement the proximal step. The most challenging step, in this setup, is to evaluate functions involving density explicitly, such as entropy, in terms of samples. This paper builds on the recent works with a slight but crucial difference: we propose to utilize a variational formulation of the objective function formulated as maximization over a parametric class of functions. Theoretically, the proposed variational formulation allows the construction of gradient flows directly for empirical distributions with a well-defined and meaningful objective function. Computationally, this approach replaces the computationally expensive step in existing methods, to handle objective functions involving density, with inner loop updates that only require a small batch of samples and scale well with the dimension. The performance and scalability of the proposed method are illustrated with the aid of several numerical experiments involving high-dimensional synthetic and real datasets. 4 authors · Dec 4, 2021
- Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction Max sliced Wasserstein (Max-SW) distance has been widely known as a solution for less discriminative projections of sliced Wasserstein (SW) distance. In applications that have various independent pairs of probability measures, amortized projection optimization is utilized to predict the ``max" projecting directions given two input measures instead of using projected gradient ascent multiple times. Despite being efficient, Max-SW and its amortized version cannot guarantee metricity property due to the sub-optimality of the projected gradient ascent and the amortization gap. Therefore, we propose to replace Max-SW with distributional sliced Wasserstein distance with von Mises-Fisher (vMF) projecting distribution (v-DSW). Since v-DSW is a metric with any non-degenerate vMF distribution, its amortized version can guarantee the metricity when performing amortization. Furthermore, current amortized models are not permutation invariant and symmetric. To address the issue, we design amortized models based on self-attention architecture. In particular, we adopt efficient self-attention architectures to make the computation linear in the number of supports. With the two improvements, we derive self-attention amortized distributional projection optimization and show its appealing performance in point-cloud reconstruction and its downstream applications. 3 authors · Jan 11, 2023
- Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space We propose a new uncertainty estimator for gradient-free optimisation of black-box simulators using deep generative surrogate models. Optimisation of these simulators is especially challenging for stochastic simulators and higher dimensions. To address these issues, we utilise a deep generative surrogate approach to model the black box response for the entire parameter space. We then leverage this knowledge to estimate the proposed uncertainty based on the Wasserstein distance - the Wasserstein uncertainty. This approach is employed in a posterior agnostic gradient-free optimisation algorithm that minimises regret over the entire parameter space. A series of tests were conducted to demonstrate that our method is more robust to the shape of both the black box function and the stochastic response of the black box than state-of-the-art methods, such as efficient global optimisation with a deep Gaussian process surrogate. 3 authors · Jul 16, 2024
- Integrating Efficient Optimal Transport and Functional Maps For Unsupervised Shape Correspondence Learning In the realm of computer vision and graphics, accurately establishing correspondences between geometric 3D shapes is pivotal for applications like object tracking, registration, texture transfer, and statistical shape analysis. Moving beyond traditional hand-crafted and data-driven feature learning methods, we incorporate spectral methods with deep learning, focusing on functional maps (FMs) and optimal transport (OT). Traditional OT-based approaches, often reliant on entropy regularization OT in learning-based framework, face computational challenges due to their quadratic cost. Our key contribution is to employ the sliced Wasserstein distance (SWD) for OT, which is a valid fast optimal transport metric in an unsupervised shape matching framework. This unsupervised framework integrates functional map regularizers with a novel OT-based loss derived from SWD, enhancing feature alignment between shapes treated as discrete probability measures. We also introduce an adaptive refinement process utilizing entropy regularized OT, further refining feature alignments for accurate point-to-point correspondences. Our method demonstrates superior performance in non-rigid shape matching, including near-isometric and non-isometric scenarios, and excels in downstream tasks like segmentation transfer. The empirical results on diverse datasets highlight our framework's effectiveness and generalization capabilities, setting new standards in non-rigid shape matching with efficient OT metrics and an adaptive refinement module. 5 authors · Mar 4, 2024
- Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method. 5 authors · Apr 1
- On Excess Mass Behavior in Gaussian Mixture Models with Orlicz-Wasserstein Distances Dirichlet Process mixture models (DPMM) in combination with Gaussian kernels have been an important modeling tool for numerous data domains arising from biological, physical, and social sciences. However, this versatility in applications does not extend to strong theoretical guarantees for the underlying parameter estimates, for which only a logarithmic rate is achieved. In this work, we (re)introduce and investigate a metric, named Orlicz-Wasserstein distance, in the study of the Bayesian contraction behavior for the parameters. We show that despite the overall slow convergence guarantees for all the parameters, posterior contraction for parameters happens at almost polynomial rates in outlier regions of the parameter space. Our theoretical results provide new insight in understanding the convergence behavior of parameters arising from various settings of hierarchical Bayesian nonparametric models. In addition, we provide an algorithm to compute the metric by leveraging Sinkhorn divergences and validate our findings through a simulation study. 3 authors · Jan 26, 2023
- Quantifying Distributional Model Risk in Marginal Problems via Optimal Transport This paper studies distributional model risk in marginal problems, where each marginal measure is assumed to lie in a Wasserstein ball centered at a fixed reference measure with a given radius. Theoretically, we establish several fundamental results including strong duality, finiteness of the proposed Wasserstein distributional model risk, and the existence of an optimizer at each radius. In addition, we show continuity of the Wasserstein distributional model risk as a function of the radius. Using strong duality, we extend the well-known Makarov bounds for the distribution function of the sum of two random variables with given marginals to Wasserstein distributionally robust Markarov bounds. Practically, we illustrate our results on four distinct applications when the sample information comes from multiple data sources and only some marginal reference measures are identified. They are: partial identification of treatment effects; externally valid treatment choice via robust welfare functions; Wasserstein distributionally robust estimation under data combination; and evaluation of the worst aggregate risk measures. 3 authors · Jul 3, 2023
- Sqrt(d) Dimension Dependence of Langevin Monte Carlo This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a refinement of mean-square analysis in Li et al. (2019), and this refined framework automates the analysis of a large class of sampling algorithms based on discretizations of contractive SDEs. Using this framework, we establish an O(d/epsilon) mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known O(d/epsilon) result and is optimal (in terms of order) in both dimension d and accuracy tolerance epsilon for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments. 3 authors · Sep 8, 2021
- Langevin Monte Carlo for strongly log-concave distributions: Randomized midpoint revisited We revisit the problem of sampling from a target distribution that has a smooth strongly log-concave density everywhere in mathbb R^p. In this context, if no additional density information is available, the randomized midpoint discretization for the kinetic Langevin diffusion is known to be the most scalable method in high dimensions with large condition numbers. Our main result is a nonasymptotic and easy to compute upper bound on the Wasserstein-2 error of this method. To provide a more thorough explanation of our method for establishing the computable upper bound, we conduct an analysis of the midpoint discretization for the vanilla Langevin process. This analysis helps to clarify the underlying principles and provides valuable insights that we use to establish an improved upper bound for the kinetic Langevin process with the midpoint discretization. Furthermore, by applying these techniques we establish new guarantees for the kinetic Langevin process with Euler discretization, which have a better dependence on the condition number than existing upper bounds. 3 authors · Jun 14, 2023
- Domain Adaptation and Entanglement: an Optimal Transport Perspective Current machine learning systems are brittle in the face of distribution shifts (DS), where the target distribution that the system is tested on differs from the source distribution used to train the system. This problem of robustness to DS has been studied extensively in the field of domain adaptation. For deep neural networks, a popular framework for unsupervised domain adaptation (UDA) is domain matching, in which algorithms try to align the marginal distributions in the feature or output space. The current theoretical understanding of these methods, however, is limited and existing theoretical results are not precise enough to characterize their performance in practice. In this paper, we derive new bounds based on optimal transport that analyze the UDA problem. Our new bounds include a term which we dub as entanglement, consisting of an expectation of Wasserstein distance between conditionals with respect to changing data distributions. Analysis of the entanglement term provides a novel perspective on the unoptimizable aspects of UDA. In various experiments with multiple models across several DS scenarios, we show that this term can be used to explain the varying performance of UDA algorithms. 4 authors · Mar 11
1 O(n)-invariant Riemannian metrics on SPD matrices Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of covariance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined on the SPD cone, in particular the kernel metrics introduced by Hiai and Petz. The class of kernel metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of stability and completeness. However, it does not contain all the classical O(n)-invariant metrics. Therefore in this work, we investigate super-classes of kernel metrics and we study which key results remain true. We also introduce an additional key result called cometric-stability, a crucial property to implement geodesics with a Hamiltonian formulation. Our method to build intermediate embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of the affine-invariant metric and the formula of the geodesic parallel transport between commuting matrices for the Bures-Wasserstein metric. 2 authors · Sep 13, 2021
1 Is Flash Attention Stable? Training large-scale machine learning models poses distinct system challenges, given both the size and complexity of today's workloads. Recently, many organizations training state-of-the-art Generative AI models have reported cases of instability during training, often taking the form of loss spikes. Numeric deviation has emerged as a potential cause of this training instability, although quantifying this is especially challenging given the costly nature of training runs. In this work, we develop a principled approach to understanding the effects of numeric deviation, and construct proxies to put observations into context when downstream effects are difficult to quantify. As a case study, we apply this framework to analyze the widely-adopted Flash Attention optimization. We find that Flash Attention sees roughly an order of magnitude more numeric deviation as compared to Baseline Attention at BF16 when measured during an isolated forward pass. We then use a data-driven analysis based on the Wasserstein Distance to provide upper bounds on how this numeric deviation impacts model weights during training, finding that the numerical deviation present in Flash Attention is 2-5 times less significant than low-precision training. 11 authors · May 4, 2024
- Chain of Log-Concave Markov Chains We introduce a theoretical framework for sampling from unnormalized densities based on a smoothing scheme that uses an isotropic Gaussian kernel with a single fixed noise scale. We prove one can decompose sampling from a density (minimal assumptions made on the density) into a sequence of sampling from log-concave conditional densities via accumulation of noisy measurements with equal noise levels. Our construction is unique in that it keeps track of a history of samples, making it non-Markovian as a whole, but it is lightweight algorithmically as the history only shows up in the form of a running empirical mean of samples. Our sampling algorithm generalizes walk-jump sampling (Saremi & Hyv\"arinen, 2019). The "walk" phase becomes a (non-Markovian) chain of (log-concave) Markov chains. The "jump" from the accumulated measurements is obtained by empirical Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein metric and compare it with various Langevin MCMC algorithms. We also report a remarkable capacity of our algorithm to "tunnel" between modes of a distribution. 3 authors · May 30, 2023
1 Wasserstein GAN We introduce a new algorithm named WGAN, an alternative to traditional GAN training. In this new model, we show that we can improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches. Furthermore, we show that the corresponding optimization problem is sound, and provide extensive theoretical work highlighting the deep connections to other distances between distributions. 3 authors · Jan 26, 2017
- Fine-Tuning a Time Series Foundation Model with Wasserstein Loss Inspired by recent advancements in large language models (LLMs) for Natural Language Processing (NLP), there has been a surge in research focused on developing foundational models for time series forecasting. One approach involves training LLM architectures on tokenized time series data using cross-entropy loss. Although this method has demonstrated promising results, cross-entropy loss is primarily designed for classification tasks and does not account for the distance between classes. To address this limitation, we propose using the Wasserstein loss for such architectures. To validate our approach, we fine-tuned a foundational time series model on 22 zero-shot datasets, comparing the performance of cross-entropy loss with that of Wasserstein loss. Our results demonstrate that replacing cross-entropy loss with Wasserstein loss significantly improves point estimation. 1 authors · Sep 18, 2024
- A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data Variational Autoencoders (VAEs) have gained significant popularity among researchers as a powerful tool for understanding unknown distributions based on limited samples. This popularity stems partly from their impressive performance and partly from their ability to provide meaningful feature representations in the latent space. Wasserstein Autoencoders (WAEs), a variant of VAEs, aim to not only improve model efficiency but also interpretability. However, there has been limited focus on analyzing their statistical guarantees. The matter is further complicated by the fact that the data distributions to which WAEs are applied - such as natural images - are often presumed to possess an underlying low-dimensional structure within a high-dimensional feature space, which current theory does not adequately account for, rendering known bounds inefficient. To bridge the gap between the theory and practice of WAEs, in this paper, we show that WAEs can learn the data distributions when the network architectures are properly chosen. We show that the convergence rates of the expected excess risk in the number of samples for WAEs are independent of the high feature dimension, instead relying only on the intrinsic dimension of the data distribution. 2 authors · Feb 23, 2024
- Wasserstein Contrastive Representation Distillation The primary goal of knowledge distillation (KD) is to encapsulate the information of a model learned from a teacher network into a student network, with the latter being more compact than the former. Existing work, e.g., using Kullback-Leibler divergence for distillation, may fail to capture important structural knowledge in the teacher network and often lacks the ability for feature generalization, particularly in situations when teacher and student are built to address different classification tasks. We propose Wasserstein Contrastive Representation Distillation (WCoRD), which leverages both primal and dual forms of Wasserstein distance for KD. The dual form is used for global knowledge transfer, yielding a contrastive learning objective that maximizes the lower bound of mutual information between the teacher and the student networks. The primal form is used for local contrastive knowledge transfer within a mini-batch, effectively matching the distributions of features between the teacher and the student networks. Experiments demonstrate that the proposed WCoRD method outperforms state-of-the-art approaches on privileged information distillation, model compression and cross-modal transfer. 6 authors · Dec 15, 2020
- Wasserstein Dependency Measure for Representation Learning Mutual information maximization has emerged as a powerful learning objective for unsupervised representation learning obtaining state-of-the-art performance in applications such as object recognition, speech recognition, and reinforcement learning. However, such approaches are fundamentally limited since a tight lower bound of mutual information requires sample size exponential in the mutual information. This limits the applicability of these approaches for prediction tasks with high mutual information, such as in video understanding or reinforcement learning. In these settings, such techniques are prone to overfit, both in theory and in practice, and capture only a few of the relevant factors of variation. This leads to incomplete representations that are not optimal for downstream tasks. In this work, we empirically demonstrate that mutual information-based representation learning approaches do fail to learn complete representations on a number of designed and real-world tasks. To mitigate these problems we introduce the Wasserstein dependency measure, which learns more complete representations by using the Wasserstein distance instead of the KL divergence in the mutual information estimator. We show that a practical approximation to this theoretically motivated solution, constructed using Lipschitz constraint techniques from the GAN literature, achieves substantially improved results on tasks where incomplete representations are a major challenge. 6 authors · Mar 27, 2019
- Wasserstein Auto-Encoders We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which leads to a different regularizer than the one used by the Variational Auto-Encoder (VAE). This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE). Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality, as measured by the FID score. 4 authors · Nov 5, 2017
1 Nonparametric Generative Modeling with Conditional Sliced-Wasserstein Flows Sliced-Wasserstein Flow (SWF) is a promising approach to nonparametric generative modeling but has not been widely adopted due to its suboptimal generative quality and lack of conditional modeling capabilities. In this work, we make two major contributions to bridging this gap. First, based on a pleasant observation that (under certain conditions) the SWF of joint distributions coincides with those of conditional distributions, we propose Conditional Sliced-Wasserstein Flow (CSWF), a simple yet effective extension of SWF that enables nonparametric conditional modeling. Second, we introduce appropriate inductive biases of images into SWF with two techniques inspired by local connectivity and multiscale representation in vision research, which greatly improve the efficiency and quality of modeling images. With all the improvements, we achieve generative performance comparable with many deep parametric generative models on both conditional and unconditional tasks in a purely nonparametric fashion, demonstrating its great potential. 5 authors · May 3, 2023
- The Wasserstein Believer: Learning Belief Updates for Partially Observable Environments through Reliable Latent Space Models Partially Observable Markov Decision Processes (POMDPs) are used to model environments where the full state cannot be perceived by an agent. As such the agent needs to reason taking into account the past observations and actions. However, simply remembering the full history is generally intractable due to the exponential growth in the history space. Maintaining a probability distribution that models the belief over what the true state is can be used as a sufficient statistic of the history, but its computation requires access to the model of the environment and is often intractable. While SOTA algorithms use Recurrent Neural Networks to compress the observation-action history aiming to learn a sufficient statistic, they lack guarantees of success and can lead to sub-optimal policies. To overcome this, we propose the Wasserstein Belief Updater, an RL algorithm that learns a latent model of the POMDP and an approximation of the belief update. Our approach comes with theoretical guarantees on the quality of our approximation ensuring that our outputted beliefs allow for learning the optimal value function. 5 authors · Mar 6, 2023
- Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation In this work, we connect two distinct concepts for unsupervised domain adaptation: feature distribution alignment between domains by utilizing the task-specific decision boundary and the Wasserstein metric. Our proposed sliced Wasserstein discrepancy (SWD) is designed to capture the natural notion of dissimilarity between the outputs of task-specific classifiers. It provides a geometrically meaningful guidance to detect target samples that are far from the support of the source and enables efficient distribution alignment in an end-to-end trainable fashion. In the experiments, we validate the effectiveness and genericness of our method on digit and sign recognition, image classification, semantic segmentation, and object detection. 4 authors · Mar 10, 2019
- Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model In this paper we study generative modeling via autoencoders while using the elegant geometric properties of the optimal transport (OT) problem and the Wasserstein distances. We introduce Sliced-Wasserstein Autoencoders (SWAE), which are generative models that enable one to shape the distribution of the latent space into any samplable probability distribution without the need for training an adversarial network or defining a closed-form for the distribution. In short, we regularize the autoencoder loss with the sliced-Wasserstein distance between the distribution of the encoded training samples and a predefined samplable distribution. We show that the proposed formulation has an efficient numerical solution that provides similar capabilities to Wasserstein Autoencoders (WAE) and Variational Autoencoders (VAE), while benefiting from an embarrassingly simple implementation. 4 authors · Apr 5, 2018
1 Concurrent Density Estimation with Wasserstein Autoencoders: Some Statistical Insights Variational Autoencoders (VAEs) have been a pioneering force in the realm of deep generative models. Amongst its legions of progenies, Wasserstein Autoencoders (WAEs) stand out in particular due to the dual offering of heightened generative quality and a strong theoretical backbone. WAEs consist of an encoding and a decoding network forming a bottleneck with the prime objective of generating new samples resembling the ones it was catered to. In the process, they aim to achieve a target latent representation of the encoded data. Our work is an attempt to offer a theoretical understanding of the machinery behind WAEs. From a statistical viewpoint, we pose the problem as concurrent density estimation tasks based on neural network-induced transformations. This allows us to establish deterministic upper bounds on the realized errors WAEs commit. We also analyze the propagation of these stochastic errors in the presence of adversaries. As a result, both the large sample properties of the reconstructed distribution and the resilience of WAE models are explored. 3 authors · Dec 11, 2023
1 Geometry on the Wasserstein space over a compact Riemannian manifold We will revisit the intrinsic differential geometry of the Wasserstein space over a Riemannian manifold, due to a series of papers by Otto, Villani, Lott, Ambrosio, Gigli, Savar\'e and so on. 2 authors · Apr 2, 2021
- SWAP: Sparse Entropic Wasserstein Regression for Robust Network Pruning This study addresses the challenge of inaccurate gradients in computing the empirical Fisher Information Matrix during neural network pruning. We introduce SWAP, a formulation of Entropic Wasserstein regression (EWR) for pruning, capitalizing on the geometric properties of the optimal transport problem. The ``swap'' of the commonly used linear regression with the EWR in optimization is analytically demonstrated to offer noise mitigation effects by incorporating neighborhood interpolation across data points with only marginal additional computational cost. The unique strength of SWAP is its intrinsic ability to balance noise reduction and covariance information preservation effectively. Extensive experiments performed on various networks and datasets show comparable performance of SWAP with state-of-the-art (SoTA) network pruning algorithms. Our proposed method outperforms the SoTA when the network size or the target sparsity is large, the gain is even larger with the existence of noisy gradients, possibly from noisy data, analog memory, or adversarial attacks. Notably, our proposed method achieves a gain of 6% improvement in accuracy and 8% improvement in testing loss for MobileNetV1 with less than one-fourth of the network parameters remaining. 2 authors · Oct 7, 2023
- Vector Quantized Wasserstein Auto-Encoder Learning deep discrete latent presentations offers a promise of better symbolic and summarized abstractions that are more useful to subsequent downstream tasks. Inspired by the seminal Vector Quantized Variational Auto-Encoder (VQ-VAE), most of work in learning deep discrete representations has mainly focused on improving the original VQ-VAE form and none of them has studied learning deep discrete representations from the generative viewpoint. In this work, we study learning deep discrete representations from the generative viewpoint. Specifically, we endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution via minimizing a WS distance between them. We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution. Finally, we empirically evaluate our method on several well-known benchmarks, where it achieves better qualitative and quantitative performances than the other VQ-VAE variants in terms of the codebook utilization and image reconstruction/generation. 7 authors · Feb 12, 2023
- Unsupervised Multilingual Alignment using Wasserstein Barycenter We study unsupervised multilingual alignment, the problem of finding word-to-word translations between multiple languages without using any parallel data. One popular strategy is to reduce multilingual alignment to the much simplified bilingual setting, by picking one of the input languages as the pivot language that we transit through. However, it is well-known that transiting through a poorly chosen pivot language (such as English) may severely degrade the translation quality, since the assumed transitive relations among all pairs of languages may not be enforced in the training process. Instead of going through a rather arbitrarily chosen pivot language, we propose to use the Wasserstein barycenter as a more informative "mean" language: it encapsulates information from all languages and minimizes all pairwise transportation costs. We evaluate our method on standard benchmarks and demonstrate state-of-the-art performances. 5 authors · Jan 28, 2020
- Improved Training of Wasserstein GANs Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms. 5 authors · Mar 31, 2017
8 Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold Numerous biological and physical processes can be modeled as systems of interacting entities evolving continuously over time, e.g. the dynamics of communicating cells or physical particles. Learning the dynamics of such systems is essential for predicting the temporal evolution of populations across novel samples and unseen environments. Flow-based models allow for learning these dynamics at the population level - they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities. That is, the change of the population at any moment in time depends on the population itself due to the interactions between samples. In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient. We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations. Namely, we embed the population of samples using a Graph Neural Network (GNN) and use these embeddings to train a Flow Matching model. This gives MFM the ability to generalize over the initial distributions unlike previously proposed methods. We demonstrate the ability of MFM to improve prediction of individual treatment responses on a large scale multi-patient single-cell drug screen dataset. 8 authors · Aug 26, 2024 2
- InfiGFusion: Graph-on-Logits Distillation via Efficient Gromov-Wasserstein for Model Fusion Recent advances in large language models (LLMs) have intensified efforts to fuse heterogeneous open-source models into a unified system that inherits their complementary strengths. Existing logit-based fusion methods maintain inference efficiency but treat vocabulary dimensions independently, overlooking semantic dependencies encoded by cross-dimension interactions. These dependencies reflect how token types interact under a model's internal reasoning and are essential for aligning models with diverse generation behaviors. To explicitly model these dependencies, we propose InfiGFusion, the first structure-aware fusion framework with a novel Graph-on-Logits Distillation (GLD) loss. Specifically, we retain the top-k logits per output and aggregate their outer products across sequence positions to form a global co-activation graph, where nodes represent vocabulary channels and edges quantify their joint activations. To ensure scalability and efficiency, we design a sorting-based closed-form approximation that reduces the original O(n^4) cost of Gromov-Wasserstein distance to O(n log n), with provable approximation guarantees. Experiments across multiple fusion settings show that GLD consistently improves fusion quality and stability. InfiGFusion outperforms SOTA models and fusion baselines across 11 benchmarks spanning reasoning, coding, and mathematics. It shows particular strength in complex reasoning tasks, with +35.6 improvement on Multistep Arithmetic and +37.06 on Causal Judgement over SFT, demonstrating superior multi-step and relational inference. 7 authors · May 19
- Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space Variational inference (VI) seeks to approximate a target distribution pi by an element of a tractable family of distributions. Of key interest in statistics and machine learning is Gaussian VI, which approximates pi by minimizing the Kullback-Leibler (KL) divergence to pi over the space of Gaussians. In this work, we develop the (Stochastic) Forward-Backward Gaussian Variational Inference (FB-GVI) algorithm to solve Gaussian VI. Our approach exploits the composite structure of the KL divergence, which can be written as the sum of a smooth term (the potential) and a non-smooth term (the entropy) over the Bures-Wasserstein (BW) space of Gaussians endowed with the Wasserstein distance. For our proposed algorithm, we obtain state-of-the-art convergence guarantees when pi is log-smooth and log-concave, as well as the first convergence guarantees to first-order stationary solutions when pi is only log-smooth. 4 authors · Apr 10, 2023
- Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN The analysis of parametric and non-parametric uncertainties of very large dynamical systems requires the construction of a stochastic model of said system. Linear approaches relying on random matrix theory and principal componant analysis can be used when systems undergo low-frequency vibrations. In the case of fast dynamics and wave propagation, we investigate a random generator of boundary conditions for fast submodels by using machine learning. We show that the use of non-linear techniques in machine learning and data-driven methods is highly relevant. Physics-informed neural networks is a possible choice for a data-driven method to replace linear modal analysis. An architecture that support a random component is necessary for the construction of the stochastic model of the physical system for non-parametric uncertainties, since the goal is to learn the underlying probabilistic distribution of uncertainty in the data. Generative Adversarial Networks (GANs) are suited for such applications, where the Wasserstein-GAN with gradient penalty variant offers improved convergence results for our problem. The objective of our approach is to train a GAN on data from a finite element method code (Fenics) so as to extract stochastic boundary conditions for faster finite element predictions on a submodel. The submodel and the training data have both the same geometrical support. It is a zone of interest for uncertainty quantification and relevant to engineering purposes. In the exploitation phase, the framework can be viewed as a randomized and parametrized simulation generator on the submodel, which can be used as a Monte Carlo estimator. 4 authors · Oct 26, 2021
- Efficient Graph Field Integrators Meet Point Clouds We present two new classes of algorithms for efficient field integration on graphs encoding point clouds. The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds. Both can be viewed as providing the functionality of Fast Multipole Methods (FMMs), which have had a tremendous impact on efficient integration, but for non-Euclidean spaces. We focus on geometries induced by distributions of walk lengths between points (e.g., shortest-path distance). We provide an extensive theoretical analysis of our algorithms, obtaining new results in structural graph theory as a byproduct. We also perform exhaustive empirical evaluation, including on-surface interpolation for rigid and deformable objects (particularly for mesh-dynamics modeling), Wasserstein distance computations for point clouds, and the Gromov-Wasserstein variant. 16 authors · Feb 2, 2023
- Diffusion Models are Minimax Optimal Distribution Estimators While efficient distribution learning is no doubt behind the groundbreaking success of diffusion modeling, its theoretical guarantees are quite limited. In this paper, we provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling for well-known function spaces. The highlight of this paper is that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates in the total variation distance and in the Wasserstein distance of order one. Furthermore, we extend our theory to demonstrate how diffusion models adapt to low-dimensional data distributions. We expect these results advance theoretical understandings of diffusion modeling and its ability to generate verisimilar outputs. 3 authors · Mar 3, 2023