- Speech Emotion Diarization: Which Emotion Appears When? Speech Emotion Recognition (SER) typically relies on utterance-level solutions. However, emotions conveyed through speech should be considered as discrete speech events with definite temporal boundaries, rather than attributes of the entire utterance. To reflect the fine-grained nature of speech emotions, we propose a new task: Speech Emotion Diarization (SED). Just as Speaker Diarization answers the question of "Who speaks when?", Speech Emotion Diarization answers the question of "Which emotion appears when?". To facilitate the evaluation of the performance and establish a common benchmark for researchers, we introduce the Zaion Emotion Dataset (ZED), an openly accessible speech emotion dataset that includes non-acted emotions recorded in real-life conditions, along with manually-annotated boundaries of emotion segments within the utterance. We provide competitive baselines and open-source the code and the pre-trained models. 4 authors · Jun 22, 2023
1 ED-TTS: Multi-Scale Emotion Modeling using Cross-Domain Emotion Diarization for Emotional Speech Synthesis Existing emotional speech synthesis methods often utilize an utterance-level style embedding extracted from reference audio, neglecting the inherent multi-scale property of speech prosody. We introduce ED-TTS, a multi-scale emotional speech synthesis model that leverages Speech Emotion Diarization (SED) and Speech Emotion Recognition (SER) to model emotions at different levels. Specifically, our proposed approach integrates the utterance-level emotion embedding extracted by SER with fine-grained frame-level emotion embedding obtained from SED. These embeddings are used to condition the reverse process of the denoising diffusion probabilistic model (DDPM). Additionally, we employ cross-domain SED to accurately predict soft labels, addressing the challenge of a scarcity of fine-grained emotion-annotated datasets for supervising emotional TTS training. 5 authors · Jan 16, 2024
1 Unsupervised Speech Segmentation: A General Approach Using Speech Language Models In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm. 3 authors · Jan 7
- Is Style All You Need? Dependencies Between Emotion and GST-based Speaker Recognition In this work, we study the hypothesis that speaker identity embeddings extracted from speech samples may be used for detection and classification of emotion. In particular, we show that emotions can be effectively identified by learning speaker identities by use of a 1-D Triplet Convolutional Neural Network (CNN) & Global Style Token (GST) scheme (e.g., DeepTalk Network) and reusing the trained speaker recognition model weights to generate features in the emotion classification domain. The automatic speaker recognition (ASR) network is trained with VoxCeleb1, VoxCeleb2, and Librispeech datasets with a triplet training loss function using speaker identity labels. Using an Support Vector Machine (SVM) classifier, we map speaker identity embeddings into discrete emotion categories from the CREMA-D, IEMOCAP, and MSP-Podcast datasets. On the task of speech emotion detection, we obtain 80.8% ACC with acted emotion samples from CREMA-D, 81.2% ACC with semi-natural emotion samples in IEMOCAP, and 66.9% ACC with natural emotion samples in MSP-Podcast. We also propose a novel two-stage hierarchical classifier (HC) approach which demonstrates +2% ACC improvement on CREMA-D emotion samples. Through this work, we seek to convey the importance of holistically modeling intra-user variation within audio samples 2 authors · Nov 15, 2022
2 A Multi-Task, Multi-Modal Approach for Predicting Categorical and Dimensional Emotions Speech emotion recognition (SER) has received a great deal of attention in recent years in the context of spontaneous conversations. While there have been notable results on datasets like the well known corpus of naturalistic dyadic conversations, IEMOCAP, for both the case of categorical and dimensional emotions, there are few papers which try to predict both paradigms at the same time. Therefore, in this work, we aim to highlight the performance contribution of multi-task learning by proposing a multi-task, multi-modal system that predicts categorical and dimensional emotions. The results emphasise the importance of cross-regularisation between the two types of emotions. Our approach consists of a multi-task, multi-modal architecture that uses parallel feature refinement through self-attention for the feature of each modality. In order to fuse the features, our model introduces a set of learnable bridge tokens that merge the acoustic and linguistic features with the help of cross-attention. Our experiments for categorical emotions on 10-fold validation yield results comparable to the current state-of-the-art. In our configuration, our multi-task approach provides better results compared to learning each paradigm separately. On top of that, our best performing model achieves a high result for valence compared to the previous multi-task experiments. 3 authors · Dec 31, 2023
18 EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration. 9 authors · Jun 11 2
- SER_AMPEL: A multi-source dataset for SER of Italian older adults In this paper, SER_AMPEL, a multi-source dataset for speech emotion recognition (SER) is presented. The peculiarity of the dataset is that it is collected with the aim of providing a reference for speech emotion recognition in case of Italian older adults. The dataset is collected following different protocols, in particular considering acted conversations, extracted from movies and TV series, and recording natural conversations where the emotions are elicited by proper questions. The evidence of the need for such a dataset emerges from the analysis of the state of the art. Preliminary considerations on the critical issues of SER are reported analyzing the classification results on a subset of the proposed dataset. 2 authors · Nov 24, 2023
- Daisy-TTS: Simulating Wider Spectrum of Emotions via Prosody Embedding Decomposition We often verbally express emotions in a multifaceted manner, they may vary in their intensities and may be expressed not just as a single but as a mixture of emotions. This wide spectrum of emotions is well-studied in the structural model of emotions, which represents variety of emotions as derivative products of primary emotions with varying degrees of intensity. In this paper, we propose an emotional text-to-speech design to simulate a wider spectrum of emotions grounded on the structural model. Our proposed design, Daisy-TTS, incorporates a prosody encoder to learn emotionally-separable prosody embedding as a proxy for emotion. This emotion representation allows the model to simulate: (1) Primary emotions, as learned from the training samples, (2) Secondary emotions, as a mixture of primary emotions, (3) Intensity-level, by scaling the emotion embedding, and (4) Emotions polarity, by negating the emotion embedding. Through a series of perceptual evaluations, Daisy-TTS demonstrated overall higher emotional speech naturalness and emotion perceiveability compared to the baseline. 2 authors · Feb 22, 2024 2
- Speech Diarization and ASR with GMM In this research paper, we delve into the topics of Speech Diarization and Automatic Speech Recognition (ASR). Speech diarization involves the separation of individual speakers within an audio stream. By employing the ASR transcript, the diarization process aims to segregate each speaker's utterances, grouping them based on their unique audio characteristics. On the other hand, Automatic Speech Recognition refers to the capability of a machine or program to identify and convert spoken words and phrases into a machine-readable format. In our speech diarization approach, we utilize the Gaussian Mixer Model (GMM) to represent speech segments. The inter-cluster distance is computed based on the GMM parameters, and the distance threshold serves as the stopping criterion. ASR entails the conversion of an unknown speech waveform into a corresponding written transcription. The speech signal is analyzed using synchronized algorithms, taking into account the pitch frequency. Our primary objective typically revolves around developing a model that minimizes the Word Error Rate (WER) metric during speech transcription. 6 authors · Jul 11, 2023
- Speech and Text-Based Emotion Recognizer Affective computing is a field of study that focuses on developing systems and technologies that can understand, interpret, and respond to human emotions. Speech Emotion Recognition (SER), in particular, has got a lot of attention from researchers in the recent past. However, in many cases, the publicly available datasets, used for training and evaluation, are scarce and imbalanced across the emotion labels. In this work, we focused on building a balanced corpus from these publicly available datasets by combining these datasets as well as employing various speech data augmentation techniques. Furthermore, we experimented with different architectures for speech emotion recognition. Our best system, a multi-modal speech, and text-based model, provides a performance of UA(Unweighed Accuracy) + WA (Weighed Accuracy) of 157.57 compared to the baseline algorithm performance of 119.66 1 authors · Dec 10, 2023
2 Improving speaker verification robustness with synthetic emotional utterances A speaker verification (SV) system offers an authentication service designed to confirm whether a given speech sample originates from a specific speaker. This technology has paved the way for various personalized applications that cater to individual preferences. A noteworthy challenge faced by SV systems is their ability to perform consistently across a range of emotional spectra. Most existing models exhibit high error rates when dealing with emotional utterances compared to neutral ones. Consequently, this phenomenon often leads to missing out on speech of interest. This issue primarily stems from the limited availability of labeled emotional speech data, impeding the development of robust speaker representations that encompass diverse emotional states. To address this concern, we propose a novel approach employing the CycleGAN framework to serve as a data augmentation method. This technique synthesizes emotional speech segments for each specific speaker while preserving the unique vocal identity. Our experimental findings underscore the effectiveness of incorporating synthetic emotional data into the training process. The models trained using this augmented dataset consistently outperform the baseline models on the task of verifying speakers in emotional speech scenarios, reducing equal error rate by as much as 3.64% relative. 6 authors · Nov 29, 2024 2
- UDDETTS: Unifying Discrete and Dimensional Emotions for Controllable Emotional Text-to-Speech Recent neural codec language models have made great progress in the field of text-to-speech (TTS), but controllable emotional TTS still faces many challenges. Traditional methods rely on predefined discrete emotion labels to control emotion categories and intensities, which can't capture the complexity and continuity of human emotional perception and expression. The lack of large-scale emotional speech datasets with balanced emotion distributions and fine-grained emotion annotations often causes overfitting in synthesis models and impedes effective emotion control. To address these issues, we propose UDDETTS, a neural codec language model unifying discrete and dimensional emotions for controllable emotional TTS. This model introduces the interpretable Arousal-Dominance-Valence (ADV) space for dimensional emotion description and supports emotion control driven by either discrete emotion labels or nonlinearly quantified ADV values. Furthermore, a semi-supervised training strategy is designed to comprehensively utilize diverse speech datasets with different types of emotion annotations to train the UDDETTS. Experiments show that UDDETTS achieves linear emotion control along the three dimensions of ADV space, and exhibits superior end-to-end emotional speech synthesis capabilities. 2 authors · May 15
- Wav2Small: Distilling Wav2Vec2 to 72K parameters for Low-Resource Speech emotion recognition Speech Emotion Recognition (SER) needs high computational resources to overcome the challenge of substantial annotator disagreement. Today SER is shifting towards dimensional annotations of arousal, dominance, and valence (A/D/V). Universal metrics as the L2 distance prove unsuitable for evaluating A/D/V accuracy due to non converging consensus of annotator opinions. However, Concordance Correlation Coefficient (CCC) arose as an alternative metric for A/D/V where a model's output is evaluated to match a whole dataset's CCC rather than L2 distances of individual audios. Recent studies have shown that Wav2Vec2.0 / WavLM architectures outputing a float value for each A/D/V dimension achieve today's State-of-the-art (SOTA) CCC on A/D/V. The Wav2Vec2.0 / WavLM family has high computational footprint, but training tiny models using human annotations has been unsuccessful. In this paper we use a large Transformer SOTA A/D/V model as Teacher/Annotator to train 5 student models: 4 MobileNets and our proposed Wav2Small, using only the Teacher's A/D/V predictions instead of human annotations. We chose MobileNet-V4 / MobileNet-V3 as students, as MobileNet has been designed for fast execution times. We propose Wav2Small an architecture designed for minimal parameter number and RAM consumption. Wav2Small with an .onnx (quantized) of only 60KB is a potential solution for A/D/V on hearing aids, having only 72K parameters vs 3.12M parameters for MobileNet-V4-Small. The Teacher model we construct sets a new SOTA on the MSP Podcast Test-1 dataset with valence CCC=0.676. 7 authors · Aug 25, 2024
- BLSP-Emo: Towards Empathetic Large Speech-Language Models The recent release of GPT-4o showcased the potential of end-to-end multimodal models, not just in terms of low latency but also in their ability to understand and generate expressive speech with rich emotions. While the details are unknown to the open research community, it likely involves significant amounts of curated data and compute, neither of which is readily accessible. In this paper, we present BLSP-Emo (Bootstrapped Language-Speech Pretraining with Emotion support), a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech and generate empathetic responses. BLSP-Emo utilizes existing speech recognition (ASR) and speech emotion recognition (SER) datasets through a two-stage process. The first stage focuses on semantic alignment, following recent work on pretraining speech-language models using ASR data. The second stage performs emotion alignment with the pretrained speech-language model on an emotion-aware continuation task constructed from SER data. Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses, both in instruction-following tasks and conversations. 6 authors · Jun 6, 2024
- THAI Speech Emotion Recognition (THAI-SER) corpus We present the first sizeable corpus of Thai speech emotion recognition, THAI-SER, containing 41 hours and 36 minutes (27,854 utterances) from 100 recordings made in different recording environments: Zoom and two studio setups. The recordings contain both scripted and improvised sessions, acted by 200 professional actors (112 females and 88 males, aged 18 to 55) and were directed by professional directors. There are five primary emotions: neutral, angry, happy, sad, and frustrated, assigned to the actors when recording utterances. The utterances are annotated with an emotional category using crowdsourcing. To control the annotation process's quality, we also design an extensive filtering and quality control scheme to ensure that the majority agreement score remains above 0.71. We evaluate our annotated corpus using two metrics: inter-annotator reliability and human recognition accuracy. Inter-annotator reliability score was calculated using Krippendorff's alpha, where our corpus, after filtering, achieved an alpha score of 0.692, higher than a recommendation of 0.667. For human recognition accuracy, our corpus scored up to 0.772 post-filtering. We also provide the results of the model trained on the corpus evaluated on both in-corpus and cross-corpus setups. The corpus is publicly available under a Creative Commons BY-SA 4.0, as well as our codes for the experiments. 10 authors · Jul 13
- Speech Recognition and Multi-Speaker Diarization of Long Conversations Speech recognition (ASR) and speaker diarization (SD) models have traditionally been trained separately to produce rich conversation transcripts with speaker labels. Recent advances have shown that joint ASR and SD models can learn to leverage audio-lexical inter-dependencies to improve word diarization performance. We introduce a new benchmark of hour-long podcasts collected from the weekly This American Life radio program to better compare these approaches when applied to extended multi-speaker conversations. We find that training separate ASR and SD models perform better when utterance boundaries are known but otherwise joint models can perform better. To handle long conversations with unknown utterance boundaries, we introduce a striding attention decoding algorithm and data augmentation techniques which, combined with model pre-training, improves ASR and SD. 4 authors · May 16, 2020
- Enhancing Speech Emotion Recognition with Graph-Based Multimodal Fusion and Prosodic Features for the Speech Emotion Recognition in Naturalistic Conditions Challenge at Interspeech 2025 Training SER models in natural, spontaneous speech is especially challenging due to the subtle expression of emotions and the unpredictable nature of real-world audio. In this paper, we present a robust system for the INTERSPEECH 2025 Speech Emotion Recognition in Naturalistic Conditions Challenge, focusing on categorical emotion recognition. Our method combines state-of-the-art audio models with text features enriched by prosodic and spectral cues. In particular, we investigate the effectiveness of Fundamental Frequency (F0) quantization and the use of a pretrained audio tagging model. We also employ an ensemble model to improve robustness. On the official test set, our system achieved a Macro F1-score of 39.79% (42.20% on validation). Our results underscore the potential of these methods, and analysis of fusion techniques confirmed the effectiveness of Graph Attention Networks. Our source code is publicly available. 10 authors · Jun 2
- LanSER: Language-Model Supported Speech Emotion Recognition Speech emotion recognition (SER) models typically rely on costly human-labeled data for training, making scaling methods to large speech datasets and nuanced emotion taxonomies difficult. We present LanSER, a method that enables the use of unlabeled data by inferring weak emotion labels via pre-trained large language models through weakly-supervised learning. For inferring weak labels constrained to a taxonomy, we use a textual entailment approach that selects an emotion label with the highest entailment score for a speech transcript extracted via automatic speech recognition. Our experimental results show that models pre-trained on large datasets with this weak supervision outperform other baseline models on standard SER datasets when fine-tuned, and show improved label efficiency. Despite being pre-trained on labels derived only from text, we show that the resulting representations appear to model the prosodic content of speech. 6 authors · Sep 7, 2023
- Non-verbal information in spontaneous speech -- towards a new framework of analysis Non-verbal signals in speech are encoded by prosody and carry information that ranges from conversation action to attitude and emotion. Despite its importance, the principles that govern prosodic structure are not yet adequately understood. This paper offers an analytical schema and a technological proof-of-concept for the categorization of prosodic signals and their association with meaning. The schema interprets surface-representations of multi-layered prosodic events. As a first step towards implementation, we present a classification process that disentangles prosodic phenomena of three orders. It relies on fine-tuning a pre-trained speech recognition model, enabling the simultaneous multi-class/multi-label detection. It generalizes over a large variety of spontaneous data, performing on a par with, or superior to, human annotation. In addition to a standardized formalization of prosody, disentangling prosodic patterns can direct a theory of communication and speech organization. A welcome by-product is an interpretation of prosody that will enhance speech- and language-related technologies. 8 authors · Mar 6, 2024
- BERSting at the Screams: A Benchmark for Distanced, Emotional and Shouted Speech Recognition Some speech recognition tasks, such as automatic speech recognition (ASR), are approaching or have reached human performance in many reported metrics. Yet, they continue to struggle in complex, real-world, situations, such as with distanced speech. Previous challenges have released datasets to address the issue of distanced ASR, however, the focus remains primarily on distance, specifically relying on multi-microphone array systems. Here we present the B(asic) E(motion) R(andom phrase) S(hou)t(s) (BERSt) dataset. The dataset contains almost 4 hours of English speech from 98 actors with varying regional and non-native accents. The data was collected on smartphones in the actors homes and therefore includes at least 98 different acoustic environments. The data also includes 7 different emotion prompts and both shouted and spoken utterances. The smartphones were places in 19 different positions, including obstructions and being in a different room than the actor. This data is publicly available for use and can be used to evaluate a variety of speech recognition tasks, including: ASR, shout detection, and speech emotion recognition (SER). We provide initial benchmarks for ASR and SER tasks, and find that ASR degrades both with an increase in distance and shout level and shows varied performance depending on the intended emotion. Our results show that the BERSt dataset is challenging for both ASR and SER tasks and continued work is needed to improve the robustness of such systems for more accurate real-world use. 9 authors · Apr 30
- Speech Emotion Recognition using Self-Supervised Features Self-supervised pre-trained features have consistently delivered state-of-art results in the field of natural language processing (NLP); however, their merits in the field of speech emotion recognition (SER) still need further investigation. In this paper we introduce a modular End-to- End (E2E) SER system based on an Upstream + Downstream architecture paradigm, which allows easy use/integration of a large variety of self-supervised features. Several SER experiments for predicting categorical emotion classes from the IEMOCAP dataset are performed. These experiments investigate interactions among fine-tuning of self-supervised feature models, aggregation of frame-level features into utterance-level features and back-end classification networks. The proposed monomodal speechonly based system not only achieves SOTA results, but also brings light to the possibility of powerful and well finetuned self-supervised acoustic features that reach results similar to the results achieved by SOTA multimodal systems using both Speech and Text modalities. 6 authors · Feb 6, 2022
- Cross-Language Speech Emotion Recognition Using Multimodal Dual Attention Transformers Despite the recent progress in speech emotion recognition (SER), state-of-the-art systems are unable to achieve improved performance in cross-language settings. In this paper, we propose a Multimodal Dual Attention Transformer (MDAT) model to improve cross-language SER. Our model utilises pre-trained models for multimodal feature extraction and is equipped with a dual attention mechanism including graph attention and co-attention to capture complex dependencies across different modalities and achieve improved cross-language SER results using minimal target language data. In addition, our model also exploits a transformer encoder layer for high-level feature representation to improve emotion classification accuracy. In this way, MDAT performs refinement of feature representation at various stages and provides emotional salient features to the classification layer. This novel approach also ensures the preservation of modality-specific emotional information while enhancing cross-modality and cross-language interactions. We assess our model's performance on four publicly available SER datasets and establish its superior effectiveness compared to recent approaches and baseline models. 3 authors · Jun 23, 2023
- Learning Alignment for Multimodal Emotion Recognition from Speech Speech emotion recognition is a challenging problem because human convey emotions in subtle and complex ways. For emotion recognition on human speech, one can either extract emotion related features from audio signals or employ speech recognition techniques to generate text from speech and then apply natural language processing to analyze the sentiment. Further, emotion recognition will be beneficial from using audio-textual multimodal information, it is not trivial to build a system to learn from multimodality. One can build models for two input sources separately and combine them in a decision level, but this method ignores the interaction between speech and text in the temporal domain. In this paper, we propose to use an attention mechanism to learn the alignment between speech frames and text words, aiming to produce more accurate multimodal feature representations. The aligned multimodal features are fed into a sequential model for emotion recognition. We evaluate the approach on the IEMOCAP dataset and the experimental results show the proposed approach achieves the state-of-the-art performance on the dataset. 6 authors · Sep 5, 2019
- End-to-End Continuous Speech Emotion Recognition in Real-life Customer Service Call Center Conversations Speech Emotion recognition (SER) in call center conversations has emerged as a valuable tool for assessing the quality of interactions between clients and agents. In contrast to controlled laboratory environments, real-life conversations take place under uncontrolled conditions and are subject to contextual factors that influence the expression of emotions. In this paper, we present our approach to constructing a large-scale reallife dataset (CusEmo) for continuous SER in customer service call center conversations. We adopted the dimensional emotion annotation approach to capture the subtlety, complexity, and continuity of emotions in real-life call center conversations, while annotating contextual information. The study also addresses the challenges encountered during the application of the End-to-End (E2E) SER system to the dataset, including determining the appropriate label sampling rate and input segment length, as well as integrating contextual information (interlocutor's gender and empathy level) with different weights using multitask learning. The result shows that incorporating the empathy level information improved the model's performance. 2 authors · Oct 2, 2023
- MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations Emotion recognition in conversations is a challenging task that has recently gained popularity due to its potential applications. Until now, however, a large-scale multimodal multi-party emotional conversational database containing more than two speakers per dialogue was missing. Thus, we propose the Multimodal EmotionLines Dataset (MELD), an extension and enhancement of EmotionLines. MELD contains about 13,000 utterances from 1,433 dialogues from the TV-series Friends. Each utterance is annotated with emotion and sentiment labels, and encompasses audio, visual and textual modalities. We propose several strong multimodal baselines and show the importance of contextual and multimodal information for emotion recognition in conversations. The full dataset is available for use at http:// affective-meld.github.io. 6 authors · Oct 4, 2018
- Property-Aware Multi-Speaker Data Simulation: A Probabilistic Modelling Technique for Synthetic Data Generation We introduce a sophisticated multi-speaker speech data simulator, specifically engineered to generate multi-speaker speech recordings. A notable feature of this simulator is its capacity to modulate the distribution of silence and overlap via the adjustment of statistical parameters. This capability offers a tailored training environment for developing neural models suited for speaker diarization and voice activity detection. The acquisition of substantial datasets for speaker diarization often presents a significant challenge, particularly in multi-speaker scenarios. Furthermore, the precise time stamp annotation of speech data is a critical factor for training both speaker diarization and voice activity detection. Our proposed multi-speaker simulator tackles these problems by generating large-scale audio mixtures that maintain statistical properties closely aligned with the input parameters. We demonstrate that the proposed multi-speaker simulator generates audio mixtures with statistical properties that closely align with the input parameters derived from real-world statistics. Additionally, we present the effectiveness of speaker diarization and voice activity detection models, which have been trained exclusively on the generated simulated datasets. 8 authors · Oct 18, 2023
- CAMEO: Collection of Multilingual Emotional Speech Corpora This paper presents CAMEO -- a curated collection of multilingual emotional speech datasets designed to facilitate research in emotion recognition and other speech-related tasks. The main objectives were to ensure easy access to the data, to allow reproducibility of the results, and to provide a standardized benchmark for evaluating speech emotion recognition (SER) systems across different emotional states and languages. The paper describes the dataset selection criteria, the curation and normalization process, and provides performance results for several models. The collection, along with metadata, and a leaderboard, is publicly available via the Hugging Face platform. 2 authors · May 16
1 Dawn of the transformer era in speech emotion recognition: closing the valence gap Recent advances in transformer-based architectures which are pre-trained in self-supervised manner have shown great promise in several machine learning tasks. In the audio domain, such architectures have also been successfully utilised in the field of speech emotion recognition (SER). However, existing works have not evaluated the influence of model size and pre-training data on downstream performance, and have shown limited attention to generalisation, robustness, fairness, and efficiency. The present contribution conducts a thorough analysis of these aspects on several pre-trained variants of wav2vec 2.0 and HuBERT that we fine-tuned on the dimensions arousal, dominance, and valence of MSP-Podcast, while additionally using IEMOCAP and MOSI to test cross-corpus generalisation. To the best of our knowledge, we obtain the top performance for valence prediction without use of explicit linguistic information, with a concordance correlation coefficient (CCC) of .638 on MSP-Podcast. Furthermore, our investigations reveal that transformer-based architectures are more robust to small perturbations compared to a CNN-based baseline and fair with respect to biological sex groups, but not towards individual speakers. Finally, we are the first to show that their extraordinary success on valence is based on implicit linguistic information learnt during fine-tuning of the transformer layers, which explains why they perform on-par with recent multimodal approaches that explicitly utilise textual information. Our findings collectively paint the following picture: transformer-based architectures constitute the new state-of-the-art in SER, but further advances are needed to mitigate remaining robustness and individual speaker issues. To make our findings reproducible, we release the best performing model to the community. 7 authors · Mar 14, 2022
5 Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation Recent advances in Talking Head Generation (THG) have achieved impressive lip synchronization and visual quality through diffusion models; yet existing methods struggle to generate emotionally expressive portraits while preserving speaker identity. We identify three critical limitations in current emotional talking head generation: insufficient utilization of audio's inherent emotional cues, identity leakage in emotion representations, and isolated learning of emotion correlations. To address these challenges, we propose a novel framework dubbed as DICE-Talk, following the idea of disentangling identity with emotion, and then cooperating emotions with similar characteristics. First, we develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention, representing emotions as identity-agnostic Gaussian distributions. Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks that explicitly capture inter-emotion relationships through vector quantization and attention-based feature aggregation. Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process through latent-space classification. Extensive experiments on MEAD and HDTF datasets demonstrate our method's superiority, outperforming state-of-the-art approaches in emotion accuracy while maintaining competitive lip-sync performance. Qualitative results and user studies further confirm our method's ability to generate identity-preserving portraits with rich, correlated emotional expressions that naturally adapt to unseen identities. 9 authors · Apr 25 2
- Emotional Prosody Control for Speech Generation Machine-generated speech is characterized by its limited or unnatural emotional variation. Current text to speech systems generates speech with either a flat emotion, emotion selected from a predefined set, average variation learned from prosody sequences in training data or transferred from a source style. We propose a text to speech(TTS) system, where a user can choose the emotion of generated speech from a continuous and meaningful emotion space (Arousal-Valence space). The proposed TTS system can generate speech from the text in any speaker's style, with fine control of emotion. We show that the system works on emotion unseen during training and can scale to previously unseen speakers given his/her speech sample. Our work expands the horizon of the state-of-the-art FastSpeech2 backbone to a multi-speaker setting and gives it much-coveted continuous (and interpretable) affective control, without any observable degradation in the quality of the synthesized speech. 3 authors · Nov 7, 2021
- Emo-DPO: Controllable Emotional Speech Synthesis through Direct Preference Optimization Current emotional text-to-speech (TTS) models predominantly conduct supervised training to learn the conversion from text and desired emotion to its emotional speech, focusing on a single emotion per text-speech pair. These models only learn the correct emotional outputs without fully comprehending other emotion characteristics, which limits their capabilities of capturing the nuances between different emotions. We propose a controllable Emo-DPO approach, which employs direct preference optimization to differentiate subtle emotional nuances between emotions through optimizing towards preferred emotions over less preferred emotional ones. Instead of relying on traditional neural architectures used in existing emotional TTS models, we propose utilizing the emotion-aware LLM-TTS neural architecture to leverage LLMs' in-context learning and instruction-following capabilities. Comprehensive experiments confirm that our proposed method outperforms the existing baselines. 5 authors · Sep 16, 2024
- EmotionRankCLAP: Bridging Natural Language Speaking Styles and Ordinal Speech Emotion via Rank-N-Contrast Current emotion-based contrastive language-audio pretraining (CLAP) methods typically learn by na\"ively aligning audio samples with corresponding text prompts. Consequently, this approach fails to capture the ordinal nature of emotions, hindering inter-emotion understanding and often resulting in a wide modality gap between the audio and text embeddings due to insufficient alignment. To handle these drawbacks, we introduce EmotionRankCLAP, a supervised contrastive learning approach that uses dimensional attributes of emotional speech and natural language prompts to jointly capture fine-grained emotion variations and improve cross-modal alignment. Our approach utilizes a Rank-N-Contrast objective to learn ordered relationships by contrasting samples based on their rankings in the valence-arousal space. EmotionRankCLAP outperforms existing emotion-CLAP methods in modeling emotion ordinality across modalities, measured via a cross-modal retrieval task. 5 authors · May 29
- Exploring Self-Supervised Multi-view Contrastive Learning for Speech Emotion Recognition with Limited Annotations Recent advancements in Deep and Self-Supervised Learning (SSL) have led to substantial improvements in Speech Emotion Recognition (SER) performance, reaching unprecedented levels. However, obtaining sufficient amounts of accurately labeled data for training or fine-tuning the models remains a costly and challenging task. In this paper, we propose a multi-view SSL pre-training technique that can be applied to various representations of speech, including the ones generated by large speech models, to improve SER performance in scenarios where annotations are limited. Our experiments, based on wav2vec 2.0, spectral and paralinguistic features, demonstrate that the proposed framework boosts the SER performance, by up to 10% in Unweighted Average Recall, in settings with extremely sparse data annotations. 4 authors · Jun 12, 2024
- Speaker Diarization using Deep Recurrent Convolutional Neural Networks for Speaker Embeddings In this paper we propose a new method of speaker diarization that employs a deep learning architecture to learn speaker embeddings. In contrast to the traditional approaches that build their speaker embeddings using manually hand-crafted spectral features, we propose to train for this purpose a recurrent convolutional neural network applied directly on magnitude spectrograms. To compare our approach with the state of the art, we collect and release for the public an additional dataset of over 6 hours of fully annotated broadcast material. The results of our evaluation on the new dataset and three other benchmark datasets show that our proposed method significantly outperforms the competitors and reduces diarization error rate by a large margin of over 30% with respect to the baseline. 3 authors · Aug 9, 2017
- EmotionTalk: An Interactive Chinese Multimodal Emotion Dataset With Rich Annotations In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose EmotionTalk, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk. 12 authors · May 28
- Adapting WavLM for Speech Emotion Recognition Recently, the usage of speech self-supervised models (SSL) for downstream tasks has been drawing a lot of attention. While large pre-trained models commonly outperform smaller models trained from scratch, questions regarding the optimal fine-tuning strategies remain prevalent. In this paper, we explore the fine-tuning strategies of the WavLM Large model for the speech emotion recognition task on the MSP Podcast Corpus. More specifically, we perform a series of experiments focusing on using gender and semantic information from utterances. We then sum up our findings and describe the final model we used for submission to Speech Emotion Recognition Challenge 2024. 4 authors · May 7, 2024
- Large Raw Emotional Dataset with Aggregation Mechanism We present a new data set for speech emotion recognition (SER) tasks called Dusha. The corpus contains approximately 350 hours of data, more than 300 000 audio recordings with Russian speech and their transcripts. Therefore it is the biggest open bi-modal data collection for SER task nowadays. It is annotated using a crowd-sourcing platform and includes two subsets: acted and real-life. Acted subset has a more balanced class distribution than the unbalanced real-life part consisting of audio podcasts. So the first one is suitable for model pre-training, and the second is elaborated for fine-tuning purposes, model approbation, and validation. This paper describes pre-processing routine, annotation, and experiment with a baseline model to demonstrate some actual metrics which could be obtained with the Dusha data set. 6 authors · Dec 23, 2022
- emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation We propose emotion2vec, a universal speech emotion representation model. emotion2vec is pre-trained on open-source unlabeled emotion data through self-supervised online distillation, combining utterance-level loss and frame-level loss during pre-training. emotion2vec outperforms state-of-the-art pre-trained universal models and emotion specialist models by only training linear layers for the speech emotion recognition task on the mainstream IEMOCAP dataset. In addition, emotion2vec shows consistent improvements among 10 different languages of speech emotion recognition datasets. emotion2vec also shows excellent results on other emotion tasks, such as song emotion recognition, emotion prediction in conversation, and sentiment analysis. Comparison experiments, ablation experiments, and visualization comprehensively demonstrate the universal capability of the proposed emotion2vec. To the best of our knowledge, emotion2vec is the first universal representation model in various emotion-related tasks, filling a gap in the field. 7 authors · Dec 23, 2023
- Temporal Modeling Matters: A Novel Temporal Emotional Modeling Approach for Speech Emotion Recognition Speech emotion recognition (SER) plays a vital role in improving the interactions between humans and machines by inferring human emotion and affective states from speech signals. Whereas recent works primarily focus on mining spatiotemporal information from hand-crafted features, we explore how to model the temporal patterns of speech emotions from dynamic temporal scales. Towards that goal, we introduce a novel temporal emotional modeling approach for SER, termed Temporal-aware bI-direction Multi-scale Network (TIM-Net), which learns multi-scale contextual affective representations from various time scales. Specifically, TIM-Net first employs temporal-aware blocks to learn temporal affective representation, then integrates complementary information from the past and the future to enrich contextual representations, and finally, fuses multiple time scale features for better adaptation to the emotional variation. Extensive experimental results on six benchmark SER datasets demonstrate the superior performance of TIM-Net, gaining 2.34% and 2.61% improvements of the average UAR and WAR over the second-best on each corpus. The source code is available at https://github.com/Jiaxin-Ye/TIM-Net_SER. 6 authors · Nov 14, 2022
- Speaker Embeddings With Weakly Supervised Voice Activity Detection For Efficient Speaker Diarization Current speaker diarization systems rely on an external voice activity detection model prior to speaker embedding extraction on the detected speech segments. In this paper, we establish that the attention system of a speaker embedding extractor acts as a weakly supervised internal VAD model and performs equally or better than comparable supervised VAD systems. Subsequently, speaker diarization can be performed efficiently by extracting the VAD logits and corresponding speaker embedding simultaneously, alleviating the need and computational overhead of an external VAD model. We provide an extensive analysis of the behavior of the frame-level attention system in current speaker verification models and propose a novel speaker diarization pipeline using ECAPA2 speaker embeddings for both VAD and embedding extraction. The proposed strategy gains state-of-the-art performance on the AMI, VoxConverse and DIHARD III diarization benchmarks. 2 authors · May 15, 2024
- DEPAC: a Corpus for Depression and Anxiety Detection from Speech Mental distress like depression and anxiety contribute to the largest proportion of the global burden of diseases. Automated diagnosis systems of such disorders, empowered by recent innovations in Artificial Intelligence, can pave the way to reduce the sufferings of the affected individuals. Development of such systems requires information-rich and balanced corpora. In this work, we introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety standard screening tools. This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information. Alongside, we present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech. Finally, we justify the quality and effectiveness of our proposed audio corpus and feature set in predicting depression severity by comparing the performance of baseline machine learning models built on this dataset with baseline models trained on other well-known depression corpora. 4 authors · Jun 20, 2023
- Cross Lingual Speech Emotion Recognition: Urdu vs. Western Languages Cross-lingual speech emotion recognition is an important task for practical applications. The performance of automatic speech emotion recognition systems degrades in cross-corpus scenarios, particularly in scenarios involving multiple languages or a previously unseen language such as Urdu for which limited or no data is available. In this study, we investigate the problem of cross-lingual emotion recognition for Urdu language and contribute URDU---the first ever spontaneous Urdu-language speech emotion database. Evaluations are performed using three different Western languages against Urdu and experimental results on different possible scenarios suggest various interesting aspects for designing more adaptive emotion recognition system for such limited languages. In results, selecting training instances of multiple languages can deliver comparable results to baseline and augmentation a fraction of testing language data while training can help to boost accuracy for speech emotion recognition. URDU data is publicly available for further research. 4 authors · Dec 14, 2018
- Speaker Normalization for Self-supervised Speech Emotion Recognition Large speech emotion recognition datasets are hard to obtain, and small datasets may contain biases. Deep-net-based classifiers, in turn, are prone to exploit those biases and find shortcuts such as speaker characteristics. These shortcuts usually harm a model's ability to generalize. To address this challenge, we propose a gradient-based adversary learning framework that learns a speech emotion recognition task while normalizing speaker characteristics from the feature representation. We demonstrate the efficacy of our method on both speaker-independent and speaker-dependent settings and obtain new state-of-the-art results on the challenging IEMOCAP dataset. 5 authors · Feb 2, 2022
1 nEMO: Dataset of Emotional Speech in Polish Speech emotion recognition has become increasingly important in recent years due to its potential applications in healthcare, customer service, and personalization of dialogue systems. However, a major issue in this field is the lack of datasets that adequately represent basic emotional states across various language families. As datasets covering Slavic languages are rare, there is a need to address this research gap. This paper presents the development of nEMO, a novel corpus of emotional speech in Polish. The dataset comprises over 3 hours of samples recorded with the participation of nine actors portraying six emotional states: anger, fear, happiness, sadness, surprise, and a neutral state. The text material used was carefully selected to represent the phonetics of the Polish language adequately. The corpus is freely available under the terms of a Creative Commons license (CC BY-NC-SA 4.0). 1 authors · Apr 9, 2024
15 Marco-Voice Technical Report This paper presents a multifunctional speech synthesis system that integrates voice cloning and emotion control speech synthesis within a unified framework. The goal of this work is to address longstanding challenges in achieving highly expressive, controllable, and natural speech generation that faithfully preserves speaker identity across diverse linguistic and emotional contexts. Our approach introduces an effective speaker-emotion disentanglement mechanism with in-batch contrastive learning, enabling independent manipulation of speaker identity and eemotional style, as well as rotational emotional embedding integration method for smooth emotion control. To support comprehensive training and evaluation, we construct CSEMOTIONS, a high-quality emotional speech dataset containing 10 hours of Mandarin speech from six professional speakers across seven emotional categories. Extensive experiments demonstrate that our system, Marco-Voice, achieves substantial improvements in both objective and subjective metrics. Comprehensive evaluations and analysis were conducted, results show that MarcoVoice delivers competitive performance in terms of speech clarity and emotional richness, representing a substantial advance in the field of expressive neural speech synthesis. 11 authors · Aug 4 2
- The Third DIHARD Diarization Challenge DIHARD III was the third in a series of speaker diarization challenges intended to improve the robustness of diarization systems to variability in recording equipment, noise conditions, and conversational domain. Speaker diarization was evaluated under two speech activity conditions (diarization from a reference speech activity vs. diarization from scratch) and 11 diverse domains. The domains span a range of recording conditions and interaction types, including read audio-books, meeting speech, clinical interviews, web videos, and, for the first time, conversational telephone speech. A total of 30 organizations (forming 21teams) from industry and academia submitted 499 valid system outputs. The evaluation results indicate that speaker diarization has improved markedly since DIHARD I, particularly for two-party interactions, but that for many domains (e.g., web video) the problem remains far from solved. 9 authors · Dec 2, 2020
1 ExHuBERT: Enhancing HuBERT Through Block Extension and Fine-Tuning on 37 Emotion Datasets Foundation models have shown great promise in speech emotion recognition (SER) by leveraging their pre-trained representations to capture emotion patterns in speech signals. To further enhance SER performance across various languages and domains, we propose a novel twofold approach. First, we gather EmoSet++, a comprehensive multi-lingual, multi-cultural speech emotion corpus with 37 datasets, 150,907 samples, and a total duration of 119.5 hours. Second, we introduce ExHuBERT, an enhanced version of HuBERT achieved by backbone extension and fine-tuning on EmoSet++. We duplicate each encoder layer and its weights, then freeze the first duplicate, integrating an extra zero-initialized linear layer and skip connections to preserve functionality and ensure its adaptability for subsequent fine-tuning. Our evaluation on unseen datasets shows the efficacy of ExHuBERT, setting a new benchmark for various SER tasks. Model and details on EmoSet++: https://huggingface.co/amiriparian/ExHuBERT. 4 authors · Jun 11, 2024
- Speech Emotion Recognition with ASR Transcripts: A Comprehensive Study on Word Error Rate and Fusion Techniques Text data is commonly utilized as a primary input to enhance Speech Emotion Recognition (SER) performance and reliability. However, the reliance on human-transcribed text in most studies impedes the development of practical SER systems, creating a gap between in-lab research and real-world scenarios where Automatic Speech Recognition (ASR) serves as the text source. Hence, this study benchmarks SER performance using ASR transcripts with varying Word Error Rates (WERs) from eleven models on three well-known corpora: IEMOCAP, CMU-MOSI, and MSP-Podcast. Our evaluation includes both text-only and bimodal SER with six fusion techniques, aiming for a comprehensive analysis that uncovers novel findings and challenges faced by current SER research. Additionally, we propose a unified ASR error-robust framework integrating ASR error correction and modality-gated fusion, achieving lower WER and higher SER results compared to the best-performing ASR transcript. These findings provide insights into SER with ASR assistance, especially for real-world applications. 3 authors · Jun 12, 2024
- MELD-ST: An Emotion-aware Speech Translation Dataset Emotion plays a crucial role in human conversation. This paper underscores the significance of considering emotion in speech translation. We present the MELD-ST dataset for the emotion-aware speech translation task, comprising English-to-Japanese and English-to-German language pairs. Each language pair includes about 10,000 utterances annotated with emotion labels from the MELD dataset. Baseline experiments using the SeamlessM4T model on the dataset indicate that fine-tuning with emotion labels can enhance translation performance in some settings, highlighting the need for further research in emotion-aware speech translation systems. 7 authors · May 21, 2024
- The Emotional Voices Database: Towards Controlling the Emotion Dimension in Voice Generation Systems In this paper, we present a database of emotional speech intended to be open-sourced and used for synthesis and generation purpose. It contains data for male and female actors in English and a male actor in French. The database covers 5 emotion classes so it could be suitable to build synthesis and voice transformation systems with the potential to control the emotional dimension in a continuous way. We show the data's efficiency by building a simple MLP system converting neutral to angry speech style and evaluate it via a CMOS perception test. Even though the system is a very simple one, the test show the efficiency of the data which is promising for future work. 5 authors · Jun 25, 2018
- Att-HACK: An Expressive Speech Database with Social Attitudes This paper presents Att-HACK, the first large database of acted speech with social attitudes. Available databases of expressive speech are rare and very often restricted to the primary emotions: anger, joy, sadness, fear. This greatly limits the scope of the research on expressive speech. Besides, a fundamental aspect of speech prosody is always ignored and missing from such databases: its variety, i.e. the possibility to repeat an utterance while varying its prosody. This paper represents a first attempt to widen the scope of expressivity in speech, by providing a database of acted speech with social attitudes: friendly, seductive, dominant, and distant. The proposed database comprises 25 speakers interpreting 100 utterances in 4 social attitudes, with 3-5 repetitions each per attitude for a total of around 30 hours of speech. The Att-HACK is freely available for academic research under a Creative Commons Licence. 2 authors · Apr 9, 2020
- LLM-based speaker diarization correction: A generalizable approach Speaker diarization is necessary for interpreting conversations transcribed using automated speech recognition (ASR) tools. Despite significant developments in diarization methods, diarization accuracy remains an issue. Here, we investigate the use of large language models (LLMs) for diarization correction as a post-processing step. LLMs were fine-tuned using the Fisher corpus, a large dataset of transcribed conversations. The ability of the models to improve diarization accuracy in a holdout dataset was measured. We report that fine-tuned LLMs can markedly improve diarization accuracy. However, model performance is constrained to transcripts produced using the same ASR tool as the transcripts used for fine-tuning, limiting generalizability. To address this constraint, an ensemble model was developed by combining weights from three separate models, each fine-tuned using transcripts from a different ASR tool. The ensemble model demonstrated better overall performance than each of the ASR-specific models, suggesting that a generalizable and ASR-agnostic approach may be achievable. We hope to make these models accessible through public-facing APIs for use by third-party applications. 3 authors · Jun 7, 2024
- Emotion Recognition from Speech In this work, we conduct an extensive comparison of various approaches to speech based emotion recognition systems. The analyses were carried out on audio recordings from Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS). After pre-processing the raw audio files, features such as Log-Mel Spectrogram, Mel-Frequency Cepstral Coefficients (MFCCs), pitch and energy were considered. The significance of these features for emotion classification was compared by applying methods such as Long Short Term Memory (LSTM), Convolutional Neural Networks (CNNs), Hidden Markov Models (HMMs) and Deep Neural Networks (DNNs). On the 14-class (2 genders x 7 emotions) classification task, an accuracy of 68% was achieved with a 4-layer 2 dimensional CNN using the Log-Mel Spectrogram features. We also observe that, in emotion recognition, the choice of audio features impacts the results much more than the model complexity. 2 authors · Dec 22, 2019
- VoxLingua107: a Dataset for Spoken Language Recognition This paper investigates the use of automatically collected web audio data for the task of spoken language recognition. We generate semi-random search phrases from language-specific Wikipedia data that are then used to retrieve videos from YouTube for 107 languages. Speech activity detection and speaker diarization are used to extract segments from the videos that contain speech. Post-filtering is used to remove segments from the database that are likely not in the given language, increasing the proportion of correctly labeled segments to 98%, based on crowd-sourced verification. The size of the resulting training set (VoxLingua107) is 6628 hours (62 hours per language on the average) and it is accompanied by an evaluation set of 1609 verified utterances. We use the data to build language recognition models for several spoken language identification tasks. Experiments show that using the automatically retrieved training data gives competitive results to using hand-labeled proprietary datasets. The dataset is publicly available. 2 authors · Nov 25, 2020
- Enhancing Speaker Diarization with Large Language Models: A Contextual Beam Search Approach Large language models (LLMs) have shown great promise for capturing contextual information in natural language processing tasks. We propose a novel approach to speaker diarization that incorporates the prowess of LLMs to exploit contextual cues in human dialogues. Our method builds upon an acoustic-based speaker diarization system by adding lexical information from an LLM in the inference stage. We model the multi-modal decoding process probabilistically and perform joint acoustic and lexical beam search to incorporate cues from both modalities: audio and text. Our experiments demonstrate that infusing lexical knowledge from the LLM into an acoustics-only diarization system improves overall speaker-attributed word error rate (SA-WER). The experimental results show that LLMs can provide complementary information to acoustic models for the speaker diarization task via proposed beam search decoding approach showing up to 39.8% relative delta-SA-WER improvement from the baseline system. Thus, we substantiate that the proposed technique is able to exploit contextual information that is inaccessible to acoustics-only systems which is represented by speaker embeddings. In addition, these findings point to the potential of using LLMs to improve speaker diarization and other speech processing tasks by capturing semantic and contextual cues. 4 authors · Sep 11, 2023
- M3SD: Multi-modal, Multi-scenario and Multi-language Speaker Diarization Dataset In the field of speaker diarization, the development of technology is constrained by two problems: insufficient data resources and poor generalization ability of deep learning models. To address these two problems, firstly, we propose an automated method for constructing speaker diarization datasets, which generates more accurate pseudo-labels for massive data through the combination of audio and video. Relying on this method, we have released Multi-modal, Multi-scenario and Multi-language Speaker Diarization (M3SD) datasets. This dataset is derived from real network videos and is highly diverse. In addition, we further propose a scenario-related model fine-tuning strategy. Based on the general model pre-trained using the above dataset, we combine the specific data of the target scenario (e.g., meetings) and achieve targeted optimization by using Adapter and LoRA joint fine-tuning, thus achieving the model's domain adaptation. Our dataset and code have been open-sourced at https://huggingface.co/spaces/OldDragon/m3sd. 3 authors · Jun 17
- Integrating Recurrence Dynamics for Speech Emotion Recognition We investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionals over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network. 4 authors · Nov 9, 2018
- CPED: A Large-Scale Chinese Personalized and Emotional Dialogue Dataset for Conversational AI Human language expression is based on the subjective construal of the situation instead of the objective truth conditions, which means that speakers' personalities and emotions after cognitive processing have an important influence on conversation. However, most existing datasets for conversational AI ignore human personalities and emotions, or only consider part of them. It's difficult for dialogue systems to understand speakers' personalities and emotions although large-scale pre-training language models have been widely used. In order to consider both personalities and emotions in the process of conversation generation, we propose CPED, a large-scale Chinese personalized and emotional dialogue dataset, which consists of multi-source knowledge related to empathy and personal characteristic. These knowledge covers gender, Big Five personality traits, 13 emotions, 19 dialogue acts and 10 scenes. CPED contains more than 12K dialogues of 392 speakers from 40 TV shows. We release the textual dataset with audio features and video features according to the copyright claims, privacy issues, terms of service of video platforms. We provide detailed description of the CPED construction process and introduce three tasks for conversational AI, including personality recognition, emotion recognition in conversations as well as personalized and emotional conversation generation. Finally, we provide baseline systems for these tasks and consider the function of speakers' personalities and emotions on conversation. Our motivation is to propose a dataset to be widely adopted by the NLP community as a new open benchmark for conversational AI research. The full dataset is available at https://github.com/scutcyr/CPED. 8 authors · May 29, 2022
- EMNS /Imz/ Corpus: An emotive single-speaker dataset for narrative storytelling in games, television and graphic novels The increasing adoption of text-to-speech technologies has led to a growing demand for natural and emotive voices that adapt to a conversation's context and emotional tone. The Emotive Narrative Storytelling (EMNS) corpus is a unique speech dataset created to enhance conversations' expressiveness and emotive quality in interactive narrative-driven systems. The corpus consists of a 2.3-hour recording featuring a female speaker delivering labelled utterances. It encompasses eight acted emotional states, evenly distributed with a variance of 0.68%, along with expressiveness levels and natural language descriptions with word emphasis labels. The evaluation of audio samples from different datasets revealed that the EMNS corpus achieved the highest average scores in accurately conveying emotions and demonstrating expressiveness. It outperformed other datasets in conveying shared emotions and achieved comparable levels of genuineness. A classification task confirmed the accurate representation of intended emotions in the corpus, with participants recognising the recordings as genuine and expressive. Additionally, the availability of the dataset collection tool under the Apache 2.0 License simplifies remote speech data collection for researchers. 3 authors · May 22, 2023
- DENS: A Dataset for Multi-class Emotion Analysis We introduce a new dataset for multi-class emotion analysis from long-form narratives in English. The Dataset for Emotions of Narrative Sequences (DENS) was collected from both classic literature available on Project Gutenberg and modern online narratives available on Wattpad, annotated using Amazon Mechanical Turk. A number of statistics and baseline benchmarks are provided for the dataset. Of the tested techniques, we find that the fine-tuning of a pre-trained BERT model achieves the best results, with an average micro-F1 score of 60.4%. Our results show that the dataset provides a novel opportunity in emotion analysis that requires moving beyond existing sentence-level techniques. 3 authors · Oct 25, 2019
- Steering Language Model to Stable Speech Emotion Recognition via Contextual Perception and Chain of Thought Large-scale audio language models (ALMs), such as Qwen2-Audio, are capable of comprehending diverse audio signal, performing audio analysis and generating textual responses. However, in speech emotion recognition (SER), ALMs often suffer from hallucinations, resulting in misclassifications or irrelevant outputs. To address these challenges, we propose C^2SER, a novel ALM designed to enhance the stability and accuracy of SER through Contextual perception and Chain of Thought (CoT). C^2SER integrates the Whisper encoder for semantic perception and Emotion2Vec-S for acoustic perception, where Emotion2Vec-S extends Emotion2Vec with semi-supervised learning to enhance emotional discrimination. Additionally, C^2SER employs a CoT approach, processing SER in a step-by-step manner while leveraging speech content and speaking styles to improve recognition. To further enhance stability, C^2SER introduces self-distillation from explicit CoT to implicit CoT, mitigating error accumulation and boosting recognition accuracy. Extensive experiments show that C^2SER outperforms existing popular ALMs, such as Qwen2-Audio and SECap, delivering more stable and precise emotion recognition. We release the training code, checkpoints, and test sets to facilitate further research. 7 authors · Feb 25
- EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and modality-of-thought (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released. 15 authors · Apr 17
- SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information. This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction. Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech. Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses. We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation. To bridge the gap, we present SD-Eval, a benchmark dataset aimed at multidimensional evaluation of spoken dialogue understanding and generation. SD-Eval focuses on paralinguistic and environmental information and includes 7,303 utterances, amounting to 8.76 hours of speech data. The data is aggregated from eight public datasets, representing four perspectives: emotion, accent, age, and background sound. To assess the SD-Eval benchmark dataset, we implement three different models and construct a training set following a similar process as SD-Eval. The training set contains 1,052.72 hours of speech data and 724.4k utterances. We also conduct a comprehensive evaluation using objective evaluation methods (e.g. BLEU and ROUGE), subjective evaluations and LLM-based metrics for the generated responses. Models conditioned with paralinguistic and environmental information outperform their counterparts in both objective and subjective measures. Moreover, experiments demonstrate LLM-based metrics show a higher correlation with human evaluation compared to traditional metrics. We open-source SD-Eval at https://github.com/amphionspace/SD-Eval. 9 authors · Jun 19, 2024
- AVA-AVD: Audio-Visual Speaker Diarization in the Wild Audio-visual speaker diarization aims at detecting "who spoke when" using both auditory and visual signals. Existing audio-visual diarization datasets are mainly focused on indoor environments like meeting rooms or news studios, which are quite different from in-the-wild videos in many scenarios such as movies, documentaries, and audience sitcoms. To develop diarization methods for these challenging videos, we create the AVA Audio-Visual Diarization (AVA-AVD) dataset. Our experiments demonstrate that adding AVA-AVD into training set can produce significantly better diarization models for in-the-wild videos despite that the data is relatively small. Moreover, this benchmark is challenging due to the diverse scenes, complicated acoustic conditions, and completely off-screen speakers. As a first step towards addressing the challenges, we design the Audio-Visual Relation Network (AVR-Net) which introduces a simple yet effective modality mask to capture discriminative information based on face visibility. Experiments show that our method not only can outperform state-of-the-art methods but is more robust as varying the ratio of off-screen speakers. Our data and code has been made publicly available at https://github.com/showlab/AVA-AVD. 6 authors · Nov 29, 2021 1
6 Adapting General Disentanglement-Based Speaker Anonymization for Enhanced Emotion Preservation A general disentanglement-based speaker anonymization system typically separates speech into content, speaker, and prosody features using individual encoders. This paper explores how to adapt such a system when a new speech attribute, for example, emotion, needs to be preserved to a greater extent. While existing systems are good at anonymizing speaker embeddings, they are not designed to preserve emotion. Two strategies for this are examined. First, we show that integrating emotion embeddings from a pre-trained emotion encoder can help preserve emotional cues, even though this approach slightly compromises privacy protection. Alternatively, we propose an emotion compensation strategy as a post-processing step applied to anonymized speaker embeddings. This conceals the original speaker's identity and reintroduces the emotional traits lost during speaker embedding anonymization. Specifically, we model the emotion attribute using support vector machines to learn separate boundaries for each emotion. During inference, the original speaker embedding is processed in two ways: one, by an emotion indicator to predict emotion and select the emotion-matched SVM accurately; and two, by a speaker anonymizer to conceal speaker characteristics. The anonymized speaker embedding is then modified along the corresponding SVM boundary towards an enhanced emotional direction to save the emotional cues. The proposed strategies are also expected to be useful for adapting a general disentanglement-based speaker anonymization system to preserve other target paralinguistic attributes, with potential for a range of downstream tasks. 6 authors · Aug 12, 2024 1
- RSET: Remapping-based Sorting Method for Emotion Transfer Speech Synthesis Although current Text-To-Speech (TTS) models are able to generate high-quality speech samples, there are still challenges in developing emotion intensity controllable TTS. Most existing TTS models achieve emotion intensity control by extracting intensity information from reference speeches. Unfortunately, limited by the lack of modeling for intra-class emotion intensity and the model's information decoupling capability, the generated speech cannot achieve fine-grained emotion intensity control and suffers from information leakage issues. In this paper, we propose an emotion transfer TTS model, which defines a remapping-based sorting method to model intra-class relative intensity information, combined with Mutual Information (MI) to decouple speaker and emotion information, and synthesizes expressive speeches with perceptible intensity differences. Experiments show that our model achieves fine-grained emotion control while preserving speaker information. 6 authors · May 27, 2024
- From Simulated Mixtures to Simulated Conversations as Training Data for End-to-End Neural Diarization End-to-end neural diarization (EEND) is nowadays one of the most prominent research topics in speaker diarization. EEND presents an attractive alternative to standard cascaded diarization systems since a single system is trained at once to deal with the whole diarization problem. Several EEND variants and approaches are being proposed, however, all these models require large amounts of annotated data for training but available annotated data are scarce. Thus, EEND works have used mostly simulated mixtures for training. However, simulated mixtures do not resemble real conversations in many aspects. In this work we present an alternative method for creating synthetic conversations that resemble real ones by using statistics about distributions of pauses and overlaps estimated on genuine conversations. Furthermore, we analyze the effect of the source of the statistics, different augmentations and amounts of data. We demonstrate that our approach performs substantially better than the original one, while reducing the dependence on the fine-tuning stage. Experiments are carried out on 2-speaker telephone conversations of Callhome and DIHARD 3. Together with this publication, we release our implementations of EEND and the method for creating simulated conversations. 4 authors · Apr 2, 2022
- Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech Emotion Recognition Speech emotion recognition plays a crucial role in human-computer interactions. However, most speech emotion recognition research is biased toward English-speaking adults, which hinders its applicability to other demographic groups in different languages and age groups. In this work, we analyze the transferability of emotion recognition across three different languages--English, Mandarin Chinese, and Cantonese; and 2 different age groups--adults and the elderly. To conduct the experiment, we develop an English-Mandarin speech emotion benchmark for adults and the elderly, BiMotion, and a Cantonese speech emotion dataset, YueMotion. This study concludes that different language and age groups require specific speech features, thus making cross-lingual inference an unsuitable method. However, cross-group data augmentation is still beneficial to regularize the model, with linguistic distance being a significant influence on cross-lingual transferability. We release publicly release our code at https://github.com/HLTCHKUST/elderly_ser. 6 authors · Jun 26, 2023
- ToxicTone: A Mandarin Audio Dataset Annotated for Toxicity and Toxic Utterance Tonality Despite extensive research on toxic speech detection in text, a critical gap remains in handling spoken Mandarin audio. The lack of annotated datasets that capture the unique prosodic cues and culturally specific expressions in Mandarin leaves spoken toxicity underexplored. To address this, we introduce ToxicTone -- the largest public dataset of its kind -- featuring detailed annotations that distinguish both forms of toxicity (e.g., profanity, bullying) and sources of toxicity (e.g., anger, sarcasm, dismissiveness). Our data, sourced from diverse real-world audio and organized into 13 topical categories, mirrors authentic communication scenarios. We also propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features using state-of-the-art speech and emotion encoders. Extensive experiments show our approach outperforms text-only and baseline models, underscoring the essential role of speech-specific cues in revealing hidden toxic expressions. 12 authors · May 21
1 Large Language Models for Cross-lingual Emotion Detection This paper presents a detailed system description of our entry for the WASSA 2024 Task 2, focused on cross-lingual emotion detection. We utilized a combination of large language models (LLMs) and their ensembles to effectively understand and categorize emotions across different languages. Our approach not only outperformed other submissions with a large margin, but also demonstrated the strength of integrating multiple models to enhance performance. Additionally, We conducted a thorough comparison of the benefits and limitations of each model used. An error analysis is included along with suggested areas for future improvement. This paper aims to offer a clear and comprehensive understanding of advanced techniques in emotion detection, making it accessible even to those new to the field. 1 authors · Oct 21, 2024
- NUS-Emo at SemEval-2024 Task 3: Instruction-Tuning LLM for Multimodal Emotion-Cause Analysis in Conversations This paper describes the architecture of our system developed for Task 3 of SemEval-2024: Multimodal Emotion-Cause Analysis in Conversations. Our project targets the challenges of subtask 2, dedicated to Multimodal Emotion-Cause Pair Extraction with Emotion Category (MECPE-Cat), and constructs a dual-component system tailored to the unique challenges of this task. We divide the task into two subtasks: emotion recognition in conversation (ERC) and emotion-cause pair extraction (ECPE). To address these subtasks, we capitalize on the abilities of Large Language Models (LLMs), which have consistently demonstrated state-of-the-art performance across various natural language processing tasks and domains. Most importantly, we design an approach of emotion-cause-aware instruction-tuning for LLMs, to enhance the perception of the emotions with their corresponding causal rationales. Our method enables us to adeptly navigate the complexities of MECPE-Cat, achieving a weighted average 34.71% F1 score of the task, and securing the 2nd rank on the leaderboard. The code and metadata to reproduce our experiments are all made publicly available. 6 authors · Aug 22, 2024
- End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based Attractors End-to-end speaker diarization for an unknown number of speakers is addressed in this paper. Recently proposed end-to-end speaker diarization outperformed conventional clustering-based speaker diarization, but it has one drawback: it is less flexible in terms of the number of speakers. This paper proposes a method for encoder-decoder based attractor calculation (EDA), which first generates a flexible number of attractors from a speech embedding sequence. Then, the generated multiple attractors are multiplied by the speech embedding sequence to produce the same number of speaker activities. The speech embedding sequence is extracted using the conventional self-attentive end-to-end neural speaker diarization (SA-EEND) network. In a two-speaker condition, our method achieved a 2.69 % diarization error rate (DER) on simulated mixtures and a 8.07 % DER on the two-speaker subset of CALLHOME, while vanilla SA-EEND attained 4.56 % and 9.54 %, respectively. In unknown numbers of speakers conditions, our method attained a 15.29 % DER on CALLHOME, while the x-vector-based clustering method achieved a 19.43 % DER. 5 authors · May 20, 2020
- Exploring speech style spaces with language models: Emotional TTS without emotion labels Many frameworks for emotional text-to-speech (E-TTS) rely on human-annotated emotion labels that are often inaccurate and difficult to obtain. Learning emotional prosody implicitly presents a tough challenge due to the subjective nature of emotions. In this study, we propose a novel approach that leverages text awareness to acquire emotional styles without the need for explicit emotion labels or text prompts. We present TEMOTTS, a two-stage framework for E-TTS that is trained without emotion labels and is capable of inference without auxiliary inputs. Our proposed method performs knowledge transfer between the linguistic space learned by BERT and the emotional style space constructed by global style tokens. Our experimental results demonstrate the effectiveness of our proposed framework, showcasing improvements in emotional accuracy and naturalness. This is one of the first studies to leverage the emotional correlation between spoken content and expressive delivery for emotional TTS. 3 authors · May 18, 2024
2 BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages People worldwide use language in subtle and complex ways to express emotions. While emotion recognition -- an umbrella term for several NLP tasks -- significantly impacts different applications in NLP and other fields, most work in the area is focused on high-resource languages. Therefore, this has led to major disparities in research and proposed solutions, especially for low-resource languages that suffer from the lack of high-quality datasets. In this paper, we present BRIGHTER-- a collection of multilabeled emotion-annotated datasets in 28 different languages. BRIGHTER covers predominantly low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances from various domains annotated by fluent speakers. We describe the data collection and annotation processes and the challenges of building these datasets. Then, we report different experimental results for monolingual and crosslingual multi-label emotion identification, as well as intensity-level emotion recognition. We investigate results with and without using LLMs and analyse the large variability in performance across languages and text domains. We show that BRIGHTER datasets are a step towards bridging the gap in text-based emotion recognition and discuss their impact and utility. 48 authors · Feb 17
15 DiarizationLM: Speaker Diarization Post-Processing with Large Language Models In this paper, we introduce DiarizationLM, a framework to leverage large language models (LLM) to post-process the outputs from a speaker diarization system. Various goals can be achieved with the proposed framework, such as improving the readability of the diarized transcript, or reducing the word diarization error rate (WDER). In this framework, the outputs of the automatic speech recognition (ASR) and speaker diarization systems are represented as a compact textual format, which is included in the prompt to an optionally finetuned LLM. The outputs of the LLM can be used as the refined diarization results with the desired enhancement. As a post-processing step, this framework can be easily applied to any off-the-shelf ASR and speaker diarization systems without retraining existing components. Our experiments show that a finetuned PaLM 2-S model can reduce the WDER by rel. 25.9% on the Fisher telephone conversation dataset, and rel. 31% on the Callhome English dataset. 6 authors · Jan 7, 2024 4
- EmotionLines: An Emotion Corpus of Multi-Party Conversations Feeling emotion is a critical characteristic to distinguish people from machines. Among all the multi-modal resources for emotion detection, textual datasets are those containing the least additional information in addition to semantics, and hence are adopted widely for testing the developed systems. However, most of the textual emotional datasets consist of emotion labels of only individual words, sentences or documents, which makes it challenging to discuss the contextual flow of emotions. In this paper, we introduce EmotionLines, the first dataset with emotions labeling on all utterances in each dialogue only based on their textual content. Dialogues in EmotionLines are collected from Friends TV scripts and private Facebook messenger dialogues. Then one of seven emotions, six Ekman's basic emotions plus the neutral emotion, is labeled on each utterance by 5 Amazon MTurkers. A total of 29,245 utterances from 2,000 dialogues are labeled in EmotionLines. We also provide several strong baselines for emotion detection models on EmotionLines in this paper. 6 authors · Feb 22, 2018
- ShEMO -- A Large-Scale Validated Database for Persian Speech Emotion Detection This paper introduces a large-scale, validated database for Persian called Sharif Emotional Speech Database (ShEMO). The database includes 3000 semi-natural utterances, equivalent to 3 hours and 25 minutes of speech data extracted from online radio plays. The ShEMO covers speech samples of 87 native-Persian speakers for five basic emotions including anger, fear, happiness, sadness and surprise, as well as neutral state. Twelve annotators label the underlying emotional state of utterances and majority voting is used to decide on the final labels. According to the kappa measure, the inter-annotator agreement is 64% which is interpreted as "substantial agreement". We also present benchmark results based on common classification methods in speech emotion detection task. According to the experiments, support vector machine achieves the best results for both gender-independent (58.2%) and gender-dependent models (female=59.4%, male=57.6%). The ShEMO is available for academic purposes free of charge to provide a baseline for further research on Persian emotional speech. 3 authors · Jun 3, 2019
- DASB - Discrete Audio and Speech Benchmark Discrete audio tokens have recently gained considerable attention for their potential to connect audio and language processing, enabling the creation of modern multimodal large language models. Ideal audio tokens must effectively preserve phonetic and semantic content along with paralinguistic information, speaker identity, and other details. While several types of audio tokens have been recently proposed, identifying the optimal tokenizer for various tasks is challenging due to the inconsistent evaluation settings in existing studies. To address this gap, we release the Discrete Audio and Speech Benchmark (DASB), a comprehensive leaderboard for benchmarking discrete audio tokens across a wide range of discriminative tasks, including speech recognition, speaker identification and verification, emotion recognition, keyword spotting, and intent classification, as well as generative tasks such as speech enhancement, separation, and text-to-speech. Our results show that, on average, semantic tokens outperform compression tokens across most discriminative and generative tasks. However, the performance gap between semantic tokens and standard continuous representations remains substantial, highlighting the need for further research in this field. 6 authors · Jun 20, 2024
- Multi-scale Speaker Diarization with Dynamic Scale Weighting Speaker diarization systems are challenged by a trade-off between the temporal resolution and the fidelity of the speaker representation. By obtaining a superior temporal resolution with an enhanced accuracy, a multi-scale approach is a way to cope with such a trade-off. In this paper, we propose a more advanced multi-scale diarization system based on a multi-scale diarization decoder. There are two main contributions in this study that significantly improve the diarization performance. First, we use multi-scale clustering as an initialization to estimate the number of speakers and obtain the average speaker representation vector for each speaker and each scale. Next, we propose the use of 1-D convolutional neural networks that dynamically determine the importance of each scale at each time step. To handle a variable number of speakers and overlapping speech, the proposed system can estimate the number of existing speakers. Our proposed system achieves a state-of-art performance on the CALLHOME and AMI MixHeadset datasets, with 3.92% and 1.05% diarization error rates, respectively. 4 authors · Mar 29, 2022
1 SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection We present our shared task on text-based emotion detection, covering more than 30 languages from seven distinct language families. These languages are predominantly low-resource and spoken across various continents. The data instances are multi-labeled into six emotional classes, with additional datasets in 11 languages annotated for emotion intensity. Participants were asked to predict labels in three tracks: (a) emotion labels in monolingual settings, (b) emotion intensity scores, and (c) emotion labels in cross-lingual settings. The task attracted over 700 participants. We received final submissions from more than 200 teams and 93 system description papers. We report baseline results, as well as findings on the best-performing systems, the most common approaches, and the most effective methods across various tracks and languages. The datasets for this task are publicly available. 21 authors · Mar 10
- EmotionIC: Emotional Inertia and Contagion-driven Dependency Modelling for Emotion Recognition in Conversation Emotion Recognition in Conversation (ERC) has attracted growing attention in recent years as a result of the advancement and implementation of human-computer interface technologies. However, previous approaches to modeling global and local context dependencies lost the diversity of dependency information and do not take the context dependency into account at the classification level. In this paper, we propose a novel approach to dependency modeling driven by Emotional Inertia and Contagion (EmotionIC) for conversational emotion recognition at the feature extraction and classification levels. At the feature extraction level, our designed Identity Masked Multi-head Attention (IM-MHA) captures the identity-based long-distant context in the dialogue to contain the diverse influence of different participants and construct the global emotional atmosphere, while the devised Dialogue-based Gate Recurrent Unit (DialogGRU) that aggregates the emotional tendencies of dyadic dialogue is applied to refine the contextual features with inter- and intra-speaker dependencies. At the classification level, by introducing skip connections in Conditional Random Field (CRF), we elaborate the Skip-chain CRF (SkipCRF) to capture the high-order dependencies within and between speakers, and to emulate the emotional flow of distant participants. Experimental results show that our method can significantly outperform the state-of-the-art models on four benchmark datasets. The ablation studies confirm that our modules can effectively model emotional inertia and contagion. 4 authors · Mar 20, 2023
16 BUT System for the MLC-SLM Challenge We present a two-speaker automatic speech recognition (ASR) system that combines DiCoW -- a diarization-conditioned variant of Whisper -- with DiariZen, a diarization pipeline built on top of Pyannote. We first evaluate both systems in out-of-domain (OOD) multilingual scenarios without any fine-tuning. In this scenario, DiariZen consistently outperforms the baseline Pyannote diarization model, demonstrating strong generalization. Despite being fine-tuned on English-only data for target-speaker ASR, DiCoW retains solid multilingual performance, indicating that encoder modifications preserve Whisper's multilingual capabilities. We then fine-tune both DiCoW and DiariZen on the MLC-SLM challenge data. The fine-tuned DiariZen continues to outperform the fine-tuned Pyannote baseline, while DiCoW sees further gains from domain adaptation. Our final system achieves a micro-average tcpWER/CER of 16.75% and ranks second in Task 2 of the MLC-SLM challenge. Lastly, we identify several labeling inconsistencies in the training data -- such as missing speech segments and incorrect silence annotations -- which can hinder diarization fine-tuning. We propose simple mitigation strategies to address these issues and improve system robustness. 6 authors · Jun 16 4
3 InstructERC: Reforming Emotion Recognition in Conversation with a Retrieval Multi-task LLMs Framework The development of emotion recognition in dialogue (ERC) has been consistently hindered by the complexity of pipeline designs, leading to ERC models that often overfit to specific datasets and dialogue patterns. In this study, we propose a novel approach, namely InstructERC, to reformulates the ERC task from a discriminative framework to a generative framework based on Large Language Models (LLMs) . InstructERC has two significant contributions: Firstly, InstructERC introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information by concatenating the historical dialog content, label statement, and emotional domain demonstrations with high semantic similarity. Furthermore, we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations. Our LLM-based plug-and-play plugin framework significantly outperforms all previous models and achieves comprehensive SOTA on three commonly used ERC datasets. Extensive analysis of parameter-efficient and data-scaling experiments provide empirical guidance for applying InstructERC in practical scenarios. Our code will be released after blind review. 5 authors · Sep 21, 2023
- APPReddit: a Corpus of Reddit Posts Annotated for Appraisal Despite the large number of computational resources for emotion recognition, there is a lack of data sets relying on appraisal models. According to Appraisal theories, emotions are the outcome of a multi-dimensional evaluation of events. In this paper, we present APPReddit, the first corpus of non-experimental data annotated according to this theory. After describing its development, we compare our resource with enISEAR, a corpus of events created in an experimental setting and annotated for appraisal. Results show that the two corpora can be mapped notwithstanding different typologies of data and annotations schemes. A SVM model trained on APPReddit predicts four appraisal dimensions without significant loss. Merging both corpora in a single training set increases the prediction of 3 out of 4 dimensions. Such findings pave the way to a better performing classification model for appraisal prediction. 6 authors · May 31, 2022
- VAEmo: Efficient Representation Learning for Visual-Audio Emotion with Knowledge Injection Audiovisual emotion recognition (AVER) aims to infer human emotions from nonverbal visual-audio (VA) cues, offering modality-complementary and language-agnostic advantages. However, AVER remains challenging due to the inherent ambiguity of emotional expressions, cross-modal expressive disparities, and the scarcity of reliably annotated data. Recent self-supervised AVER approaches have introduced strong multimodal representations, yet they predominantly rely on modality-specific encoders and coarse content-level alignment, limiting fine-grained emotional semantic modeling. To address these issues, we propose VAEmo, an efficient two-stage framework for emotion-centric joint VA representation learning with external knowledge injection. In Stage~1, a unified and lightweight representation network is pre-trained on large-scale speaker-centric VA corpora via masked reconstruction and contrastive objectives, mitigating the modality gap and learning expressive, complementary representations without emotion labels. In Stage~2, multimodal large language models automatically generate detailed affective descriptions according to our well-designed chain-of-thought prompting for only a small subset of VA samples; these rich textual semantics are then injected by aligning their corresponding embeddings with VA representations through dual-path contrastive learning, further bridging the emotion gap. Extensive experiments on multiple downstream AVER benchmarks show that VAEmo achieves state-of-the-art performance with a compact design, highlighting the benefit of unified cross-modal encoding and emotion-aware semantic guidance for efficient, generalizable VA emotion representations. 7 authors · May 4
- Visually Guided Self Supervised Learning of Speech Representations Self supervised representation learning has recently attracted a lot of research interest for both the audio and visual modalities. However, most works typically focus on a particular modality or feature alone and there has been very limited work that studies the interaction between the two modalities for learning self supervised representations. We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech. We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment. Through this process, the audio encoder network learns useful speech representations that we evaluate on emotion recognition and speech recognition. We achieve state of the art results for emotion recognition and competitive results for speech recognition. This demonstrates the potential of visual supervision for learning audio representations as a novel way for self-supervised learning which has not been explored in the past. The proposed unsupervised audio features can leverage a virtually unlimited amount of training data of unlabelled audiovisual speech and have a large number of potentially promising applications. 5 authors · Jan 13, 2020
1 Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation Emotion Recognition in Conversation (ERC) involves detecting the underlying emotion behind each utterance within a conversation. Effectively generating representations for utterances remains a significant challenge in this task. Recent works propose various models to address this issue, but they still struggle with differentiating similar emotions such as excitement and happiness. To alleviate this problem, We propose an Emotion-Anchored Contrastive Learning (EACL) framework that can generate more distinguishable utterance representations for similar emotions. To achieve this, we utilize label encodings as anchors to guide the learning of utterance representations and design an auxiliary loss to ensure the effective separation of anchors for similar emotions. Moreover, an additional adaptation process is proposed to adapt anchors to serve as effective classifiers to improve classification performance. Across extensive experiments, our proposed EACL achieves state-of-the-art emotion recognition performance and exhibits superior performance on similar emotions. Our code is available at https://github.com/Yu-Fangxu/EACL. 4 authors · Mar 29, 2024
- EmoTalk: Speech-Driven Emotional Disentanglement for 3D Face Animation Speech-driven 3D face animation aims to generate realistic facial expressions that match the speech content and emotion. However, existing methods often neglect emotional facial expressions or fail to disentangle them from speech content. To address this issue, this paper proposes an end-to-end neural network to disentangle different emotions in speech so as to generate rich 3D facial expressions. Specifically, we introduce the emotion disentangling encoder (EDE) to disentangle the emotion and content in the speech by cross-reconstructed speech signals with different emotion labels. Then an emotion-guided feature fusion decoder is employed to generate a 3D talking face with enhanced emotion. The decoder is driven by the disentangled identity, emotional, and content embeddings so as to generate controllable personal and emotional styles. Finally, considering the scarcity of the 3D emotional talking face data, we resort to the supervision of facial blendshapes, which enables the reconstruction of plausible 3D faces from 2D emotional data, and contribute a large-scale 3D emotional talking face dataset (3D-ETF) to train the network. Our experiments and user studies demonstrate that our approach outperforms state-of-the-art methods and exhibits more diverse facial movements. We recommend watching the supplementary video: https://ziqiaopeng.github.io/emotalk 8 authors · Mar 20, 2023
- Explainable Multimodal Emotion Reasoning Multimodal emotion recognition is an active research topic in artificial intelligence. Its primary objective is to integrate multi-modalities (such as acoustic, visual, and lexical clues) to identify human emotional states. Current works generally assume accurate emotion labels for benchmark datasets and focus on developing more effective architectures. But due to the inherent subjectivity of emotions, existing datasets often lack high annotation consistency, resulting in potentially inaccurate labels. Consequently, models built on these datasets may struggle to meet the demands of practical applications. To address this issue, it is crucial to enhance the reliability of emotion annotations. In this paper, we propose a novel task called ``Explainable Multimodal Emotion Reasoning (EMER)''. In contrast to previous works that primarily focus on predicting emotions, EMER takes a step further by providing explanations for these predictions. The prediction is considered correct as long as the reasoning process behind the predicted emotion is plausible. This paper presents our initial efforts on EMER, where we introduce a benchmark dataset, establish baseline models, and define evaluation metrics. Meanwhile, we observe the necessity of integrating multi-faceted capabilities to deal with EMER. Therefore, we propose the first multimodal large language model (LLM) in affective computing, called AffectGPT. We aim to tackle the long-standing challenge of label ambiguity and chart a path toward more reliable techniques. Furthermore, EMER offers an opportunity to evaluate the audio-video-text understanding capabilities of recent multimodal LLM. To facilitate further research, we make the code and data available at: https://github.com/zeroQiaoba/AffectGPT. 9 authors · Jun 27, 2023 2
- Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modeling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no benchmark for this task. We address this gap by introducing continuous valence and arousal labels for an existing dataset of children's stories originally annotated with discrete emotion categories. We collect additional annotations for this data and map the categorical labels to the continuous valence and arousal space. For predicting the thus obtained emotionality signals, we fine-tune a DeBERTa model and improve upon this baseline via a weakly supervised learning approach. The best configuration achieves a Concordance Correlation Coefficient (CCC) of .8221 for valence and .7125 for arousal on the test set, demonstrating the efficacy of our proposed approach. A detailed analysis shows the extent to which the results vary depending on factors such as the author, the individual story, or the section within the story. In addition, we uncover the weaknesses of our approach by investigating examples that prove to be difficult to predict. 5 authors · Jun 4, 2024
3 MIKU-PAL: An Automated and Standardized Multi-Modal Method for Speech Paralinguistic and Affect Labeling Acquiring large-scale emotional speech data with strong consistency remains a challenge for speech synthesis. This paper presents MIKU-PAL, a fully automated multimodal pipeline for extracting high-consistency emotional speech from unlabeled video data. Leveraging face detection and tracking algorithms, we developed an automatic emotion analysis system using a multimodal large language model (MLLM). Our results demonstrate that MIKU-PAL can achieve human-level accuracy (68.5% on MELD) and superior consistency (0.93 Fleiss kappa score) while being much cheaper and faster than human annotation. With the high-quality, flexible, and consistent annotation from MIKU-PAL, we can annotate fine-grained speech emotion categories of up to 26 types, validated by human annotators with 83% rationality ratings. Based on our proposed system, we further released a fine-grained emotional speech dataset MIKU-EmoBench(131.2 hours) as a new benchmark for emotional text-to-speech and visual voice cloning. 3 authors · May 21 2
4 TinyEmo: Scaling down Emotional Reasoning via Metric Projection This paper introduces TinyEmo, a family of small multi-modal language models for emotional reasoning and classification. Our approach features: (1) a synthetic emotional instruct dataset for both pre-training and fine-tuning stages, (2) a Metric Projector that delegates classification from the language model allowing for more efficient training and inference, (3) a multi-modal large language model (MM-LLM) for emotional reasoning, and (4) a semi-automated framework for bias detection. TinyEmo is able to perform emotion classification and emotional reasoning, all while using substantially fewer parameters than comparable models. This efficiency allows us to freely incorporate more diverse emotional datasets, enabling strong performance on classification tasks, with our smallest model (700M parameters) outperforming larger state-of-the-art models based on general-purpose MM-LLMs with over 7B parameters. Additionally, the Metric Projector allows for interpretability and indirect bias detection in large models without additional training, offering an approach to understand and improve AI systems. We release code, models, and dataset at https://github.com/ggcr/TinyEmo 1 authors · Oct 9, 2024 2
- Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models Empathetic response generation is increasingly significant in AI, necessitating nuanced emotional and cognitive understanding coupled with articulate response expression. Current large language models (LLMs) excel in response expression; however, they lack the ability to deeply understand emotional and cognitive nuances, particularly in pinpointing fine-grained emotions and their triggers. Conversely, small-scale empathetic models (SEMs) offer strength in fine-grained emotion detection and detailed emotion cause identification. To harness the complementary strengths of both LLMs and SEMs, we introduce a Hybrid Empathetic Framework (HEF). HEF regards SEMs as flexible plugins to improve LLM's nuanced emotional and cognitive understanding. Regarding emotional understanding, HEF implements a two-stage emotion prediction strategy, encouraging LLMs to prioritize primary emotions emphasized by SEMs, followed by other categories, substantially alleviates the difficulties for LLMs in fine-grained emotion detection. Regarding cognitive understanding, HEF employs an emotion cause perception strategy, prompting LLMs to focus on crucial emotion-eliciting words identified by SEMs, thus boosting LLMs' capabilities in identifying emotion causes. This collaborative approach enables LLMs to discern emotions more precisely and formulate empathetic responses. We validate HEF on the Empathetic-Dialogue dataset, and the findings indicate that our framework enhances the refined understanding of LLMs and their ability to convey empathetic responses. 7 authors · Feb 18, 2024
- Jointly Predicting Emotion, Age, and Country Using Pre-Trained Acoustic Embedding In this paper, we demonstrated the benefit of using pre-trained model to extract acoustic embedding to jointly predict (multitask learning) three tasks: emotion, age, and native country. The pre-trained model was trained with wav2vec 2.0 large robust model on the speech emotion corpus. The emotion and age tasks were regression problems, while country prediction was a classification task. A single harmonic mean from three metrics was used to evaluate the performance of multitask learning. The classifier was a linear network with two independent layers and shared layers, including the output layers. This study explores multitask learning on different acoustic features (including the acoustic embedding extracted from a model trained on an affective speech dataset), seed numbers, batch sizes, and normalizations for predicting paralinguistic information from speech. 3 authors · Jul 21, 2022
- Rethinking Multimodal Sentiment Analysis: A High-Accuracy, Simplified Fusion Architecture Multimodal sentiment analysis, a pivotal task in affective computing, seeks to understand human emotions by integrating cues from language, audio, and visual signals. While many recent approaches leverage complex attention mechanisms and hierarchical architectures, we propose a lightweight, yet effective fusion-based deep learning model tailored for utterance-level emotion classification. Using the benchmark IEMOCAP dataset, which includes aligned text, audio-derived numeric features, and visual descriptors, we design a modality-specific encoder using fully connected layers followed by dropout regularization. The modality-specific representations are then fused using simple concatenation and passed through a dense fusion layer to capture cross-modal interactions. This streamlined architecture avoids computational overhead while preserving performance, achieving a classification accuracy of 92% across six emotion categories. Our approach demonstrates that with careful feature engineering and modular design, simpler fusion strategies can outperform or match more complex models, particularly in resource-constrained environments. 2 authors · May 4
- Does Visual Self-Supervision Improve Learning of Speech Representations for Emotion Recognition? Self-supervised learning has attracted plenty of recent research interest. However, most works for self-supervision in speech are typically unimodal and there has been limited work that studies the interaction between audio and visual modalities for cross-modal self-supervision. This work (1) investigates visual self-supervision via face reconstruction to guide the learning of audio representations; (2) proposes an audio-only self-supervision approach for speech representation learning; (3) shows that a multi-task combination of the proposed visual and audio self-supervision is beneficial for learning richer features that are more robust in noisy conditions; (4) shows that self-supervised pretraining can outperform fully supervised training and is especially useful to prevent overfitting on smaller sized datasets. We evaluate our learned audio representations for discrete emotion recognition, continuous affect recognition and automatic speech recognition. We outperform existing self-supervised methods for all tested downstream tasks. Our results demonstrate the potential of visual self-supervision for audio feature learning and suggest that joint visual and audio self-supervision leads to more informative audio representations for speech and emotion recognition. 3 authors · May 4, 2020
1 Natural Language Processing for Cognitive Analysis of Emotions Emotion analysis in texts suffers from two major limitations: annotated gold-standard corpora are mostly small and homogeneous, and emotion identification is often simplified as a sentence-level classification problem. To address these issues, we introduce a new annotation scheme for exploring emotions and their causes, along with a new French dataset composed of autobiographical accounts of an emotional scene. The texts were collected by applying the Cognitive Analysis of Emotions developed by A. Finkel to help people improve on their emotion management. The method requires the manual analysis of an emotional event by a coach trained in Cognitive Analysis. We present a rule-based approach to automatically annotate emotions and their semantic roles (e.g. emotion causes) to facilitate the identification of relevant aspects by the coach. We investigate future directions for emotion analysis using graph structures. 4 authors · Oct 11, 2022
1 Emotion Recognition based on Psychological Components in Guided Narratives for Emotion Regulation Emotion regulation is a crucial element in dealing with emotional events and has positive effects on mental health. This paper aims to provide a more comprehensive understanding of emotional events by introducing a new French corpus of emotional narratives collected using a questionnaire for emotion regulation. We follow the theoretical framework of the Component Process Model which considers emotions as dynamic processes composed of four interrelated components (behavior, feeling, thinking and territory). Each narrative is related to a discrete emotion and is structured based on all emotion components by the writers. We study the interaction of components and their impact on emotion classification with machine learning methods and pre-trained language models. Our results show that each component improves prediction performance, and that the best results are achieved by jointly considering all components. Our results also show the effectiveness of pre-trained language models in predicting discrete emotion from certain components, which reveal differences in how emotion components are expressed. 4 authors · May 15, 2023
1 UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion Recognition Multimodal sentiment analysis (MSA) and emotion recognition in conversation (ERC) are key research topics for computers to understand human behaviors. From a psychological perspective, emotions are the expression of affect or feelings during a short period, while sentiments are formed and held for a longer period. However, most existing works study sentiment and emotion separately and do not fully exploit the complementary knowledge behind the two. In this paper, we propose a multimodal sentiment knowledge-sharing framework (UniMSE) that unifies MSA and ERC tasks from features, labels, and models. We perform modality fusion at the syntactic and semantic levels and introduce contrastive learning between modalities and samples to better capture the difference and consistency between sentiments and emotions. Experiments on four public benchmark datasets, MOSI, MOSEI, MELD, and IEMOCAP, demonstrate the effectiveness of the proposed method and achieve consistent improvements compared with state-of-the-art methods. 6 authors · Nov 21, 2022
- Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency For a large portion of real-life utterances, the intention cannot be solely decided by either their semantic or syntactic characteristics. Although not all the sociolinguistic and pragmatic information can be digitized, at least phonetic features are indispensable in understanding the spoken language. Especially in head-final languages such as Korean, sentence-final prosody has great importance in identifying the speaker's intention. This paper suggests a system which identifies the inherent intention of a spoken utterance given its transcript, in some cases using auxiliary acoustic features. The main point here is a separate distinction for cases where discrimination of intention requires an acoustic cue. Thus, the proposed classification system decides whether the given utterance is a fragment, statement, question, command, or a rhetorical question/command, utilizing the intonation-dependency coming from the head-finality. Based on an intuitive understanding of the Korean language that is engaged in the data annotation, we construct a network which identifies the intention of a speech, and validate its utility with the test sentences. The system, if combined with up-to-date speech recognizers, is expected to be flexibly inserted into various language understanding modules. 5 authors · Nov 10, 2018
- EmoSpeech: Guiding FastSpeech2 Towards Emotional Text to Speech State-of-the-art speech synthesis models try to get as close as possible to the human voice. Hence, modelling emotions is an essential part of Text-To-Speech (TTS) research. In our work, we selected FastSpeech2 as the starting point and proposed a series of modifications for synthesizing emotional speech. According to automatic and human evaluation, our model, EmoSpeech, surpasses existing models regarding both MOS score and emotion recognition accuracy in generated speech. We provided a detailed ablation study for every extension to FastSpeech2 architecture that forms EmoSpeech. The uneven distribution of emotions in the text is crucial for better, synthesized speech and intonation perception. Our model includes a conditioning mechanism that effectively handles this issue by allowing emotions to contribute to each phone with varying intensity levels. The human assessment indicates that proposed modifications generate audio with higher MOS and emotional expressiveness. 2 authors · Jun 28, 2023
- Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor. 3 authors · Sep 13, 2023
- A Persian ASR-based SER: Modification of Sharif Emotional Speech Database and Investigation of Persian Text Corpora Speech Emotion Recognition (SER) is one of the essential perceptual methods of humans in understanding the situation and how to interact with others, therefore, in recent years, it has been tried to add the ability to recognize emotions to human-machine communication systems. Since the SER process relies on labeled data, databases are essential for it. Incomplete, low-quality or defective data may lead to inaccurate predictions. In this paper, we fixed the inconsistencies in Sharif Emotional Speech Database (ShEMO), as a Persian database, by using an Automatic Speech Recognition (ASR) system and investigating the effect of Farsi language models obtained from accessible Persian text corpora. We also introduced a Persian/Farsi ASR-based SER system that uses linguistic features of the ASR outputs and Deep Learning-based models. 2 authors · Nov 18, 2022
- Rasa: Building Expressive Speech Synthesis Systems for Indian Languages in Low-resource Settings We release Rasa, the first multilingual expressive TTS dataset for any Indian language, which contains 10 hours of neutral speech and 1-3 hours of expressive speech for each of the 6 Ekman emotions covering 3 languages: Assamese, Bengali, & Tamil. Our ablation studies reveal that just 1 hour of neutral and 30 minutes of expressive data can yield a Fair system as indicated by MUSHRA scores. Increasing neutral data to 10 hours, with minimal expressive data, significantly enhances expressiveness. This offers a practical recipe for resource-constrained languages, prioritizing easily obtainable neutral data alongside smaller amounts of expressive data. We show the importance of syllabically balanced data and pooling emotions to enhance expressiveness. We also highlight challenges in generating specific emotions, e.g., fear and surprise. 4 authors · Jul 19, 2024
1 Self-Supervised Embeddings for Detecting Individual Symptoms of Depression Depression, a prevalent mental health disorder impacting millions globally, demands reliable assessment systems. Unlike previous studies that focus solely on either detecting depression or predicting its severity, our work identifies individual symptoms of depression while also predicting its severity using speech input. We leverage self-supervised learning (SSL)-based speech models to better utilize the small-sized datasets that are frequently encountered in this task. Our study demonstrates notable performance improvements by utilizing SSL embeddings compared to conventional speech features. We compare various types of SSL pretrained models to elucidate the type of speech information (semantic, speaker, or prosodic) that contributes the most in identifying different symptoms. Additionally, we evaluate the impact of combining multiple SSL embeddings on performance. Furthermore, we show the significance of multi-task learning for identifying depressive symptoms effectively. 6 authors · Jun 24, 2024
7 EmoKnob: Enhance Voice Cloning with Fine-Grained Emotion Control While recent advances in Text-to-Speech (TTS) technology produce natural and expressive speech, they lack the option for users to select emotion and control intensity. We propose EmoKnob, a framework that allows fine-grained emotion control in speech synthesis with few-shot demonstrative samples of arbitrary emotion. Our framework leverages the expressive speaker representation space made possible by recent advances in foundation voice cloning models. Based on the few-shot capability of our emotion control framework, we propose two methods to apply emotion control on emotions described by open-ended text, enabling an intuitive interface for controlling a diverse array of nuanced emotions. To facilitate a more systematic emotional speech synthesis field, we introduce a set of evaluation metrics designed to rigorously assess the faithfulness and recognizability of emotion control frameworks. Through objective and subjective evaluations, we show that our emotion control framework effectively embeds emotions into speech and surpasses emotion expressiveness of commercial TTS services. 3 authors · Sep 30, 2024 2
- LEIA: Linguistic Embeddings for the Identification of Affect The wealth of text data generated by social media has enabled new kinds of analysis of emotions with language models. These models are often trained on small and costly datasets of text annotations produced by readers who guess the emotions expressed by others in social media posts. This affects the quality of emotion identification methods due to training data size limitations and noise in the production of labels used in model development. We present LEIA, a model for emotion identification in text that has been trained on a dataset of more than 6 million posts with self-annotated emotion labels for happiness, affection, sadness, anger, and fear. LEIA is based on a word masking method that enhances the learning of emotion words during model pre-training. LEIA achieves macro-F1 values of approximately 73 on three in-domain test datasets, outperforming other supervised and unsupervised methods in a strong benchmark that shows that LEIA generalizes across posts, users, and time periods. We further perform an out-of-domain evaluation on five different datasets of social media and other sources, showing LEIA's robust performance across media, data collection methods, and annotation schemes. Our results show that LEIA generalizes its classification of anger, happiness, and sadness beyond the domain it was trained on. LEIA can be applied in future research to provide better identification of emotions in text from the perspective of the writer. The models produced for this article are publicly available at https://huggingface.co/LEIA 6 authors · Apr 21, 2023
2 End-to-end speaker segmentation for overlap-aware resegmentation Speaker segmentation consists in partitioning a conversation between one or more speakers into speaker turns. Usually addressed as the late combination of three sub-tasks (voice activity detection, speaker change detection, and overlapped speech detection), we propose to train an end-to-end segmentation model that does it directly. Inspired by the original end-to-end neural speaker diarization approach (EEND), the task is modeled as a multi-label classification problem using permutation-invariant training. The main difference is that our model operates on short audio chunks (5 seconds) but at a much higher temporal resolution (every 16ms). Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection. Our proposed model can also be used as a post-processing step, to detect and correctly assign overlapped speech regions. Relative diarization error rate improvement over the best considered baseline (VBx) reaches 17% on AMI, 13% on DIHARD 3, and 13% on VoxConverse. 2 authors · Apr 8, 2021
1 Long-Short Distance Graph Neural Networks and Improved Curriculum Learning for Emotion Recognition in Conversation Emotion Recognition in Conversation (ERC) is a practical and challenging task. This paper proposes a novel multimodal approach, the Long-Short Distance Graph Neural Network (LSDGNN). Based on the Directed Acyclic Graph (DAG), it constructs a long-distance graph neural network and a short-distance graph neural network to obtain multimodal features of distant and nearby utterances, respectively. To ensure that long- and short-distance features are as distinct as possible in representation while enabling mutual influence between the two modules, we employ a Differential Regularizer and incorporate a BiAffine Module to facilitate feature interaction. In addition, we propose an Improved Curriculum Learning (ICL) to address the challenge of data imbalance. By computing the similarity between different emotions to emphasize the shifts in similar emotions, we design a "weighted emotional shift" metric and develop a difficulty measurer, enabling a training process that prioritizes learning easy samples before harder ones. Experimental results on the IEMOCAP and MELD datasets demonstrate that our model outperforms existing benchmarks. 3 authors · Jul 20 1
1 Why We Feel: Breaking Boundaries in Emotional Reasoning with Multimodal Large Language Models Most existing emotion analysis emphasizes which emotion arises (e.g., happy, sad, angry) but neglects the deeper why. We propose Emotion Interpretation (EI), focusing on causal factors-whether explicit (e.g., observable objects, interpersonal interactions) or implicit (e.g., cultural context, off-screen events)-that drive emotional responses. Unlike traditional emotion recognition, EI tasks require reasoning about triggers instead of mere labeling. To facilitate EI research, we present EIBench, a large-scale benchmark encompassing 1,615 basic EI samples and 50 complex EI samples featuring multifaceted emotions. Each instance demands rationale-based explanations rather than straightforward categorization. We further propose a Coarse-to-Fine Self-Ask (CFSA) annotation pipeline, which guides Vision-Language Models (VLLMs) through iterative question-answer rounds to yield high-quality labels at scale. Extensive evaluations on open-source and proprietary large language models under four experimental settings reveal consistent performance gaps-especially for more intricate scenarios-underscoring EI's potential to enrich empathetic, context-aware AI applications. Our benchmark and methods are publicly available at: https://github.com/Lum1104/EIBench, offering a foundation for advanced multimodal causal analysis and next-generation affective computing. 10 authors · Apr 10
- MIPS at SemEval-2024 Task 3: Multimodal Emotion-Cause Pair Extraction in Conversations with Multimodal Language Models This paper presents our winning submission to Subtask 2 of SemEval 2024 Task 3 on multimodal emotion cause analysis in conversations. We propose a novel Multimodal Emotion Recognition and Multimodal Emotion Cause Extraction (MER-MCE) framework that integrates text, audio, and visual modalities using specialized emotion encoders. Our approach sets itself apart from top-performing teams by leveraging modality-specific features for enhanced emotion understanding and causality inference. Experimental evaluation demonstrates the advantages of our multimodal approach, with our submission achieving a competitive weighted F1 score of 0.3435, ranking third with a margin of only 0.0339 behind the 1st team and 0.0025 behind the 2nd team. Project: https://github.com/MIPS-COLT/MER-MCE.git 6 authors · Mar 30, 2024
2 CHEER-Ekman: Fine-grained Embodied Emotion Classification Emotions manifest through physical experiences and bodily reactions, yet identifying such embodied emotions in text remains understudied. We present an embodied emotion classification dataset, CHEER-Ekman, extending the existing binary embodied emotion dataset with Ekman's six basic emotion categories. Using automatic best-worst scaling with large language models, we achieve performance superior to supervised approaches on our new dataset. Our investigation reveals that simplified prompting instructions and chain-of-thought reasoning significantly improve emotion recognition accuracy, enabling smaller models to achieve competitive performance with larger ones. Our dataset is publicly available at: https://github.com/menamerai/cheer-ekman. 4 authors · Jun 1
- EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa We present EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa, a simple yet expressive scheme of solving the ERC (emotion recognition in conversation) task. By simply prepending speaker names to utterances and inserting separation tokens between the utterances in a dialogue, EmoBERTa can learn intra- and inter- speaker states and context to predict the emotion of a current speaker, in an end-to-end manner. Our experiments show that we reach a new state of the art on the two popular ERC datasets using a basic and straight-forward approach. We've open sourced our code and models at https://github.com/tae898/erc. 2 authors · Aug 26, 2021
- Leveraging Recent Advances in Deep Learning for Audio-Visual Emotion Recognition Emotional expressions are the behaviors that communicate our emotional state or attitude to others. They are expressed through verbal and non-verbal communication. Complex human behavior can be understood by studying physical features from multiple modalities; mainly facial, vocal and physical gestures. Recently, spontaneous multi-modal emotion recognition has been extensively studied for human behavior analysis. In this paper, we propose a new deep learning-based approach for audio-visual emotion recognition. Our approach leverages recent advances in deep learning like knowledge distillation and high-performing deep architectures. The deep feature representations of the audio and visual modalities are fused based on a model-level fusion strategy. A recurrent neural network is then used to capture the temporal dynamics. Our proposed approach substantially outperforms state-of-the-art approaches in predicting valence on the RECOLA dataset. Moreover, our proposed visual facial expression feature extraction network outperforms state-of-the-art results on the AffectNet and Google Facial Expression Comparison datasets. 3 authors · Mar 16, 2021
- Multi-Modal Emotion recognition on IEMOCAP Dataset using Deep Learning Emotion recognition has become an important field of research in Human Computer Interactions as we improve upon the techniques for modelling the various aspects of behaviour. With the advancement of technology our understanding of emotions are advancing, there is a growing need for automatic emotion recognition systems. One of the directions the research is heading is the use of Neural Networks which are adept at estimating complex functions that depend on a large number and diverse source of input data. In this paper we attempt to exploit this effectiveness of Neural networks to enable us to perform multimodal Emotion recognition on IEMOCAP dataset using data from Speech, Text, and Motion capture data from face expressions, rotation and hand movements. Prior research has concentrated on Emotion detection from Speech on the IEMOCAP dataset, but our approach is the first that uses the multiple modes of data offered by IEMOCAP for a more robust and accurate emotion detection. 3 authors · Apr 16, 2018
- Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Empathy is a complex cognitive ability based on the reasoning of others' affective states. In order to better understand others and express stronger empathy in dialogues, we argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation. However, previous approaches for recognizing emotion cause words in text require sub-utterance level annotations, which can be demanding. Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label. Also, we introduce a novel method based on pragmatics to make dialogue models focus on targeted words in the input during generation. Our method is applicable to any dialogue models with no additional training on the fly. We show our approach improves multiple best-performing dialogue agents on generating more focused empathetic responses in terms of both automatic and human evaluation. 3 authors · Sep 18, 2021
- Enhancing Emotion Recognition in Conversation through Emotional Cross-Modal Fusion and Inter-class Contrastive Learning The purpose of emotion recognition in conversation (ERC) is to identify the emotion category of an utterance based on contextual information. Previous ERC methods relied on simple connections for cross-modal fusion and ignored the information differences between modalities, resulting in the model being unable to focus on modality-specific emotional information. At the same time, the shared information between modalities was not processed to generate emotions. Information redundancy problem. To overcome these limitations, we propose a cross-modal fusion emotion prediction network based on vector connections. The network mainly includes two stages: the multi-modal feature fusion stage based on connection vectors and the emotion classification stage based on fused features. Furthermore, we design a supervised inter-class contrastive learning module based on emotion labels. Experimental results confirm the effectiveness of the proposed method, demonstrating excellent performance on the IEMOCAP and MELD datasets. 7 authors · May 28, 2024
- Advances in integration of end-to-end neural and clustering-based diarization for real conversational speech Recently, we proposed a novel speaker diarization method called End-to-End-Neural-Diarization-vector clustering (EEND-vector clustering) that integrates clustering-based and end-to-end neural network-based diarization approaches into one framework. The proposed method combines advantages of both frameworks, i.e. high diarization performance and handling of overlapped speech based on EEND, and robust handling of long recordings with an arbitrary number of speakers based on clustering-based approaches. However, the method was only evaluated so far on simulated 2-speaker meeting-like data. This paper is to (1) report recent advances we made to this framework, including newly introduced robust constrained clustering algorithms, and (2) experimentally show that the method can now significantly outperform competitive diarization methods such as Encoder-Decoder Attractor (EDA)-EEND, on CALLHOME data which comprises real conversational speech data including overlapped speech and an arbitrary number of speakers. By further analyzing the experimental results, this paper also discusses pros and cons of the proposed method and reveals potential for further improvement. A set of the code to reproduce the results is available at https://github.com/nttcslab-sp/EEND-vector-clustering. 3 authors · May 19, 2021
- DiCoW: Diarization-Conditioned Whisper for Target Speaker Automatic Speech Recognition Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains a significant challenge, particularly when systems conditioned on speaker embeddings fail to generalize to unseen speakers. In this work, we propose Diarization-Conditioned Whisper (DiCoW), a novel approach to target-speaker ASR that leverages speaker diarization outputs as conditioning information. DiCoW extends the pre-trained Whisper model by integrating diarization labels directly, eliminating reliance on speaker embeddings and reducing the need for extensive speaker-specific training data. Our method introduces frame-level diarization-dependent transformations (FDDT) and query-key biasing (QKb) techniques to refine the model's focus on target speakers while effectively handling overlapping speech. By leveraging diarization outputs as conditioning signals, DiCoW simplifies the workflow for multi-speaker ASR, improves generalization to unseen speakers and enables more reliable transcription in real-world multi-speaker recordings. Additionally, we explore the integration of a connectionist temporal classification (CTC) head to Whisper and demonstrate its ability to improve transcription efficiency through hybrid decoding. Notably, we show that our approach is not limited to Whisper; it also provides similar benefits when applied to the Branchformer model. We validate DiCoW on real-world datasets, including AMI and NOTSOFAR-1 from CHiME-8 challenge, as well as synthetic benchmarks such as Libri2Mix and LibriCSS, enabling direct comparisons with previous methods. Results demonstrate that DiCoW enhances the model's target-speaker ASR capabilities while maintaining Whisper's accuracy and robustness on single-speaker data. 10 authors · Dec 30, 2024
- Multimodal Emotion Recognition with Modality-Pairwise Unsupervised Contrastive Loss Emotion recognition is involved in several real-world applications. With an increase in available modalities, automatic understanding of emotions is being performed more accurately. The success in Multimodal Emotion Recognition (MER), primarily relies on the supervised learning paradigm. However, data annotation is expensive, time-consuming, and as emotion expression and perception depends on several factors (e.g., age, gender, culture) obtaining labels with a high reliability is hard. Motivated by these, we focus on unsupervised feature learning for MER. We consider discrete emotions, and as modalities text, audio and vision are used. Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature. Our end-to-end feature learning approach has several differences (and advantages) compared to existing MER methods: i) it is unsupervised, so the learning is lack of data labelling cost; ii) it does not require data spatial augmentation, modality alignment, large number of batch size or epochs; iii) it applies data fusion only at inference; and iv) it does not require backbones pre-trained on emotion recognition task. The experiments on benchmark datasets show that our method outperforms several baseline approaches and unsupervised learning methods applied in MER. Particularly, it even surpasses a few supervised MER state-of-the-art. 6 authors · Jul 23, 2022
- SUN Team's Contribution to ABAW 2024 Competition: Audio-visual Valence-Arousal Estimation and Expression Recognition As emotions play a central role in human communication, automatic emotion recognition has attracted increasing attention in the last two decades. While multimodal systems enjoy high performances on lab-controlled data, they are still far from providing ecological validity on non-lab-controlled, namely 'in-the-wild' data. This work investigates audiovisual deep learning approaches for emotion recognition in-the-wild problem. We particularly explore the effectiveness of architectures based on fine-tuned Convolutional Neural Networks (CNN) and Public Dimensional Emotion Model (PDEM), for video and audio modality, respectively. We compare alternative temporal modeling and fusion strategies using the embeddings from these multi-stage trained modality-specific Deep Neural Networks (DNN). We report results on the AffWild2 dataset under Affective Behavior Analysis in-the-Wild 2024 (ABAW'24) challenge protocol. 6 authors · Mar 19, 2024 1
- EmoVOCA: Speech-Driven Emotional 3D Talking Heads The domain of 3D talking head generation has witnessed significant progress in recent years. A notable challenge in this field consists in blending speech-related motions with expression dynamics, which is primarily caused by the lack of comprehensive 3D datasets that combine diversity in spoken sentences with a variety of facial expressions. Whereas literature works attempted to exploit 2D video data and parametric 3D models as a workaround, these still show limitations when jointly modeling the two motions. In this work, we address this problem from a different perspective, and propose an innovative data-driven technique that we used for creating a synthetic dataset, called EmoVOCA, obtained by combining a collection of inexpressive 3D talking heads and a set of 3D expressive sequences. To demonstrate the advantages of this approach, and the quality of the dataset, we then designed and trained an emotional 3D talking head generator that accepts a 3D face, an audio file, an emotion label, and an intensity value as inputs, and learns to animate the audio-synchronized lip movements with expressive traits of the face. Comprehensive experiments, both quantitative and qualitative, using our data and generator evidence superior ability in synthesizing convincing animations, when compared with the best performing methods in the literature. Our code and pre-trained model will be made available. 3 authors · Mar 19, 2024
1 Evaluating the Capabilities of Large Language Models for Multi-label Emotion Understanding Large Language Models (LLMs) show promising learning and reasoning abilities. Compared to other NLP tasks, multilingual and multi-label emotion evaluation tasks are under-explored in LLMs. In this paper, we present EthioEmo, a multi-label emotion classification dataset for four Ethiopian languages, namely, Amharic (amh), Afan Oromo (orm), Somali (som), and Tigrinya (tir). We perform extensive experiments with an additional English multi-label emotion dataset from SemEval 2018 Task 1. Our evaluation includes encoder-only, encoder-decoder, and decoder-only language models. We compare zero and few-shot approaches of LLMs to fine-tuning smaller language models. The results show that accurate multi-label emotion classification is still insufficient even for high-resource languages such as English, and there is a large gap between the performance of high-resource and low-resource languages. The results also show varying performance levels depending on the language and model type. EthioEmo is available publicly to further improve the understanding of emotions in language models and how people convey emotions through various languages. 8 authors · Dec 17, 2024
- The Effect of Silence Feature in Dimensional Speech Emotion Recognition Silence is a part of human-to-human communication, which can be a clue for human emotion perception. For automatic emotion recognition by a computer, it is not clear whether silence is useful to determine human emotion within a speech. This paper presents an investigation of the effect of using silence feature in dimensional emotion recognition. Since the silence feature is extracted per utterance, we grouped the silence feature with high statistical functions from a set of acoustic features. The result reveals that the silence features affect the arousal dimension more than other emotion dimensions. The proper choice of a threshold factor in the calculation of silence feature improved the performance of dimensional speech emotion recognition performance, in terms of a concordance correlation coefficient. On the other side, improper choice of that factor leads to a decrease in performance by using the same architecture. 2 authors · Mar 2, 2020
24 Optimizing Multilingual Text-To-Speech with Accents & Emotions State-of-the-art text-to-speech (TTS) systems realize high naturalness in monolingual environments, synthesizing speech with correct multilingual accents (especially for Indic languages) and context-relevant emotions still poses difficulty owing to cultural nuance discrepancies in current frameworks. This paper introduces a new TTS architecture integrating accent along with preserving transliteration with multi-scale emotion modelling, in particularly tuned for Hindi and Indian English accent. Our approach extends the Parler-TTS model by integrating A language-specific phoneme alignment hybrid encoder-decoder architecture, and culture-sensitive emotion embedding layers trained on native speaker corpora, as well as incorporating a dynamic accent code switching with residual vector quantization. Quantitative tests demonstrate 23.7% improvement in accent accuracy (Word Error Rate reduction from 15.4% to 11.8%) and 85.3% emotion recognition accuracy from native listeners, surpassing METTS and VECL-TTS baselines. The novelty of the system is that it can mix code in real time - generating statements such as "Namaste, let's talk about <Hindi phrase>" with uninterrupted accent shifts while preserving emotional consistency. Subjective evaluation with 200 users reported a mean opinion score (MOS) of 4.2/5 for cultural correctness, much better than existing multilingual systems (p<0.01). This research makes cross-lingual synthesis more feasible by showcasing scalable accent-emotion disentanglement, with direct application in South Asian EdTech and accessibility software. 5 authors · Jun 19 8
- Recognizing Emotion Cause in Conversations We address the problem of recognizing emotion cause in conversations, define two novel sub-tasks of this problem, and provide a corresponding dialogue-level dataset, along with strong Transformer-based baselines. The dataset is available at https://github.com/declare-lab/RECCON. Introduction: Recognizing the cause behind emotions in text is a fundamental yet under-explored area of research in NLP. Advances in this area hold the potential to improve interpretability and performance in affect-based models. Identifying emotion causes at the utterance level in conversations is particularly challenging due to the intermingling dynamics among the interlocutors. Method: We introduce the task of Recognizing Emotion Cause in CONversations with an accompanying dataset named RECCON, containing over 1,000 dialogues and 10,000 utterance cause-effect pairs. Furthermore, we define different cause types based on the source of the causes, and establish strong Transformer-based baselines to address two different sub-tasks on this dataset: causal span extraction and causal emotion entailment. Result: Our Transformer-based baselines, which leverage contextual pre-trained embeddings, such as RoBERTa, outperform the state-of-the-art emotion cause extraction approaches Conclusion: We introduce a new task highly relevant for (explainable) emotion-aware artificial intelligence: recognizing emotion cause in conversations, provide a new highly challenging publicly available dialogue-level dataset for this task, and give strong baseline results on this dataset. 12 authors · Dec 21, 2020
- Global Rhythm Style Transfer Without Text Transcriptions Prosody plays an important role in characterizing the style of a speaker or an emotion, but most non-parallel voice or emotion style transfer algorithms do not convert any prosody information. Two major components of prosody are pitch and rhythm. Disentangling the prosody information, particularly the rhythm component, from the speech is challenging because it involves breaking the synchrony between the input speech and the disentangled speech representation. As a result, most existing prosody style transfer algorithms would need to rely on some form of text transcriptions to identify the content information, which confines their application to high-resource languages only. Recently, SpeechSplit has made sizeable progress towards unsupervised prosody style transfer, but it is unable to extract high-level global prosody style in an unsupervised manner. In this paper, we propose AutoPST, which can disentangle global prosody style from speech without relying on any text transcriptions. AutoPST is an Autoencoder-based Prosody Style Transfer framework with a thorough rhythm removal module guided by the self-expressive representation learning. Experiments on different style transfer tasks show that AutoPST can effectively convert prosody that correctly reflects the styles of the target domains. 7 authors · Jun 15, 2021
- Early Joint Learning of Emotion Information Makes MultiModal Model Understand You Better In this paper, we present our solutions for emotion recognition in the sub-challenges of Multimodal Emotion Recognition Challenge (MER2024). To mitigate the modal competition issue between audio and text, we adopt an early fusion strategy based on a large language model, where joint training of audio and text is conducted initially. And the joint Audio-Text modal feature will be late-fused with other unimodal features. In order to solve the problems of data insufficiency and class imbalance, We use multiple turns of multi-model voting for data mining. Moreover, to enhance the quality of audio features, we employ speech source separation to preprocess audios. Our model ranks 2nd in both MER2024-SEMI and MER2024-NOISE, validating our method's effectiveness. 10 authors · Sep 12, 2024