2 SEA-HELM: Southeast Asian Holistic Evaluation of Language Models With the rapid emergence of novel capabilities in Large Language Models (LLMs), the need for rigorous multilingual and multicultural benchmarks that are integrated has become more pronounced. Though existing LLM benchmarks are capable of evaluating specific capabilities of LLMs in English as well as in various mid- to low-resource languages, including those in the Southeast Asian (SEA) region, a comprehensive and authentic evaluation suite for the SEA languages has not been developed thus far. Here, we present SEA-HELM, a holistic linguistic and cultural LLM evaluation suite that emphasizes SEA languages, comprising five core pillars: (1) NLP Classics, (2) LLM-specifics, (3) SEA Linguistics, (4) SEA Culture, (5) Safety. SEA-HELM currently supports Filipino, Indonesian, Tamil, Thai, and Vietnamese. We also introduce the SEA-HELM leaderboard, which allows users to understand models' multilingual and multicultural performance in a systematic and user-friendly manner. 10 authors · Feb 20
- Libra-Leaderboard: Towards Responsible AI through a Balanced Leaderboard of Safety and Capability To address this gap, we introduce Libra-Leaderboard, a comprehensive framework designed to rank LLMs through a balanced evaluation of performance and safety. Combining a dynamic leaderboard with an interactive LLM arena, Libra-Leaderboard encourages the joint optimization of capability and safety. Unlike traditional approaches that average performance and safety metrics, Libra-Leaderboard uses a distance-to-optimal-score method to calculate the overall rankings. This approach incentivizes models to achieve a balance rather than excelling in one dimension at the expense of some other ones. In the first release, Libra-Leaderboard evaluates 26 mainstream LLMs from 14 leading organizations, identifying critical safety challenges even in state-of-the-art models. 35 authors · Dec 24, 2024
17 Named Clinical Entity Recognition Benchmark This technical report introduces a Named Clinical Entity Recognition Benchmark for evaluating language models in healthcare, addressing the crucial natural language processing (NLP) task of extracting structured information from clinical narratives to support applications like automated coding, clinical trial cohort identification, and clinical decision support. The leaderboard provides a standardized platform for assessing diverse language models, including encoder and decoder architectures, on their ability to identify and classify clinical entities across multiple medical domains. A curated collection of openly available clinical datasets is utilized, encompassing entities such as diseases, symptoms, medications, procedures, and laboratory measurements. Importantly, these entities are standardized according to the Observational Medical Outcomes Partnership (OMOP) Common Data Model, ensuring consistency and interoperability across different healthcare systems and datasets, and a comprehensive evaluation of model performance. Performance of models is primarily assessed using the F1-score, and it is complemented by various assessment modes to provide comprehensive insights into model performance. The report also includes a brief analysis of models evaluated to date, highlighting observed trends and limitations. By establishing this benchmarking framework, the leaderboard aims to promote transparency, facilitate comparative analyses, and drive innovation in clinical entity recognition tasks, addressing the need for robust evaluation methods in healthcare NLP. 9 authors · Oct 7, 2024 3