2 OmDet: Large-scale vision-language multi-dataset pre-training with multimodal detection network The advancement of object detection (OD) in open-vocabulary and open-world scenarios is a critical challenge in computer vision. This work introduces OmDet, a novel language-aware object detection architecture, and an innovative training mechanism that harnesses continual learning and multi-dataset vision-language pre-training. Leveraging natural language as a universal knowledge representation, OmDet accumulates a "visual vocabulary" from diverse datasets, unifying the task as a language-conditioned detection framework. Our multimodal detection network (MDN) overcomes the challenges of multi-dataset joint training and generalizes to numerous training datasets without manual label taxonomy merging. We demonstrate superior performance of OmDet over strong baselines in object detection in the wild, open-vocabulary detection, and phrase grounding, achieving state-of-the-art results. Ablation studies reveal the impact of scaling the pre-training visual vocabulary, indicating a promising direction for further expansion to larger datasets. The effectiveness of our deep fusion approach is underscored by its ability to learn jointly from multiple datasets, enhancing performance through knowledge sharing. 3 authors · Sep 10, 2022
2 Real-time Transformer-based Open-Vocabulary Detection with Efficient Fusion Head End-to-end transformer-based detectors (DETRs) have shown exceptional performance in both closed-set and open-vocabulary object detection (OVD) tasks through the integration of language modalities. However, their demanding computational requirements have hindered their practical application in real-time object detection (OD) scenarios. In this paper, we scrutinize the limitations of two leading models in the OVDEval benchmark, OmDet and Grounding-DINO, and introduce OmDet-Turbo. This novel transformer-based real-time OVD model features an innovative Efficient Fusion Head (EFH) module designed to alleviate the bottlenecks observed in OmDet and Grounding-DINO. Notably, OmDet-Turbo-Base achieves a 100.2 frames per second (FPS) with TensorRT and language cache techniques applied. Notably, in zero-shot scenarios on COCO and LVIS datasets, OmDet-Turbo achieves performance levels nearly on par with current state-of-the-art supervised models. Furthermore, it establishes new state-of-the-art benchmarks on ODinW and OVDEval, boasting an AP of 30.1 and an NMS-AP of 26.86, respectively. The practicality of OmDet-Turbo in industrial applications is underscored by its exceptional performance on benchmark datasets and superior inference speed, positioning it as a compelling choice for real-time object detection tasks. Code: https://github.com/om-ai-lab/OmDet 5 authors · Mar 11, 2024