new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 20

FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGAs

Transformer-based Large Language Models (LLMs) have made a significant impact on various domains. However, LLMs' efficiency suffers from both heavy computation and memory overheads. Compression techniques like sparsification and quantization are commonly used to mitigate the gap between LLM's computation/memory overheads and hardware capacity. However, existing GPU and transformer-based accelerators cannot efficiently process compressed LLMs, due to the following unresolved challenges: low computational efficiency, underutilized memory bandwidth, and large compilation overheads. This paper proposes FlightLLM, enabling efficient LLMs inference with a complete mapping flow on FPGAs. In FlightLLM, we highlight an innovative solution that the computation and memory overhead of LLMs can be solved by utilizing FPGA-specific resources (e.g., DSP48 and heterogeneous memory hierarchy). We propose a configurable sparse DSP chain to support different sparsity patterns with high computation efficiency. Second, we propose an always-on-chip decode scheme to boost memory bandwidth with mixed-precision support. Finally, to make FlightLLM available for real-world LLMs, we propose a length adaptive compilation method to reduce the compilation overhead. Implemented on the Xilinx Alveo U280 FPGA, FlightLLM achieves 6.0times higher energy efficiency and 1.8times better cost efficiency against commercial GPUs (e.g., NVIDIA V100S) on modern LLMs (e.g., LLaMA2-7B) using vLLM and SmoothQuant under the batch size of one. FlightLLM beats NVIDIA A100 GPU with 1.2times higher throughput using the latest Versal VHK158 FPGA.

ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning

In the last three years, the largest dense deep learning models have grown over 1000x to reach hundreds of billions of parameters, while the GPU memory has only grown by 5x (16 GB to 80 GB). Therefore, the growth in model scale has been supported primarily though system innovations that allow large models to fit in the aggregate GPU memory of multiple GPUs. However, we are getting close to the GPU memory wall. It requires 800 NVIDIA V100 GPUs just to fit a trillion parameter model for training, and such clusters are simply out of reach for most data scientists. In addition, training models at that scale requires complex combinations of parallelism techniques that puts a big burden on the data scientists to refactor their model. In this paper we present ZeRO-Infinity, a novel heterogeneous system technology that leverages GPU, CPU, and NVMe memory to allow for unprecedented model scale on limited resources without requiring model code refactoring. At the same time it achieves excellent training throughput and scalability, unencumbered by the limited CPU or NVMe bandwidth. ZeRO-Infinity can fit models with tens and even hundreds of trillions of parameters for training on current generation GPU clusters. It can be used to fine-tune trillion parameter models on a single NVIDIA DGX-2 node, making large models more accessible. In terms of training throughput and scalability, it sustains over 25 petaflops on 512 NVIDIA V100 GPUs(40% of peak), while also demonstrating super linear scalability. An open source implementation of ZeRO-Infinity is available through DeepSpeed, a deep learning optimization library that makes distributed training easy, efficient, and effective.

Hardware Acceleration of Neural Graphics

Rendering and inverse-rendering algorithms that drive conventional computer graphics have recently been superseded by neural representations (NR). NRs have recently been used to learn the geometric and the material properties of the scenes and use the information to synthesize photorealistic imagery, thereby promising a replacement for traditional rendering algorithms with scalable quality and predictable performance. In this work we ask the question: Does neural graphics (NG) need hardware support? We studied representative NG applications showing that, if we want to render 4k res. at 60FPS there is a gap of 1.5X-55X in the desired performance on current GPUs. For AR/VR applications, there is an even larger gap of 2-4 OOM between the desired performance and the required system power. We identify that the input encoding and the MLP kernels are the performance bottlenecks, consuming 72%,60% and 59% of application time for multi res. hashgrid, multi res. densegrid and low res. densegrid encodings, respectively. We propose a NG processing cluster, a scalable and flexible hardware architecture that directly accelerates the input encoding and MLP kernels through dedicated engines and supports a wide range of NG applications. We also accelerate the rest of the kernels by fusing them together in Vulkan, which leads to 9.94X kernel-level performance improvement compared to un-fused implementation of the pre-processing and the post-processing kernels. Our results show that, NGPC gives up to 58X end-to-end application-level performance improvement, for multi res. hashgrid encoding on average across the four NG applications, the performance benefits are 12X,20X,33X and 39X for the scaling factor of 8,16,32 and 64, respectively. Our results show that with multi res. hashgrid encoding, NGPC enables the rendering of 4k res. at 30FPS for NeRF and 8k res. at 120FPS for all our other NG applications.

AMD-Hummingbird: Towards an Efficient Text-to-Video Model

Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.

EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention

Vision transformers have shown great success due to their high model capabilities. However, their remarkable performance is accompanied by heavy computation costs, which makes them unsuitable for real-time applications. In this paper, we propose a family of high-speed vision transformers named EfficientViT. We find that the speed of existing transformer models is commonly bounded by memory inefficient operations, especially the tensor reshaping and element-wise functions in MHSA. Therefore, we design a new building block with a sandwich layout, i.e., using a single memory-bound MHSA between efficient FFN layers, which improves memory efficiency while enhancing channel communication. Moreover, we discover that the attention maps share high similarities across heads, leading to computational redundancy. To address this, we present a cascaded group attention module feeding attention heads with different splits of the full feature, which not only saves computation cost but also improves attention diversity. Comprehensive experiments demonstrate EfficientViT outperforms existing efficient models, striking a good trade-off between speed and accuracy. For instance, our EfficientViT-M5 surpasses MobileNetV3-Large by 1.9% in accuracy, while getting 40.4% and 45.2% higher throughput on Nvidia V100 GPU and Intel Xeon CPU, respectively. Compared to the recent efficient model MobileViT-XXS, EfficientViT-M2 achieves 1.8% superior accuracy, while running 5.8x/3.7x faster on the GPU/CPU, and 7.4x faster when converted to ONNX format. Code and models are available at https://github.com/microsoft/Cream/tree/main/EfficientViT.

VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers

The Diffusion Transformers Models (DiTs) have transitioned the network architecture from traditional UNets to transformers, demonstrating exceptional capabilities in image generation. Although DiTs have been widely applied to high-definition video generation tasks, their large parameter size hinders inference on edge devices. Vector quantization (VQ) can decompose model weight into a codebook and assignments, allowing extreme weight quantization and significantly reducing memory usage. In this paper, we propose VQ4DiT, a fast post-training vector quantization method for DiTs. We found that traditional VQ methods calibrate only the codebook without calibrating the assignments. This leads to weight sub-vectors being incorrectly assigned to the same assignment, providing inconsistent gradients to the codebook and resulting in a suboptimal result. To address this challenge, VQ4DiT calculates the candidate assignment set for each weight sub-vector based on Euclidean distance and reconstructs the sub-vector based on the weighted average. Then, using the zero-data and block-wise calibration method, the optimal assignment from the set is efficiently selected while calibrating the codebook. VQ4DiT quantizes a DiT XL/2 model on a single NVIDIA A100 GPU within 20 minutes to 5 hours depending on the different quantization settings. Experiments show that VQ4DiT establishes a new state-of-the-art in model size and performance trade-offs, quantizing weights to 2-bit precision while retaining acceptable image generation quality.

NanoFlow: Towards Optimal Large Language Model Serving Throughput

The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.

LTX-Video: Realtime Video Latent Diffusion

We introduce LTX-Video, a transformer-based latent diffusion model that adopts a holistic approach to video generation by seamlessly integrating the responsibilities of the Video-VAE and the denoising transformer. Unlike existing methods, which treat these components as independent, LTX-Video aims to optimize their interaction for improved efficiency and quality. At its core is a carefully designed Video-VAE that achieves a high compression ratio of 1:192, with spatiotemporal downscaling of 32 x 32 x 8 pixels per token, enabled by relocating the patchifying operation from the transformer's input to the VAE's input. Operating in this highly compressed latent space enables the transformer to efficiently perform full spatiotemporal self-attention, which is essential for generating high-resolution videos with temporal consistency. However, the high compression inherently limits the representation of fine details. To address this, our VAE decoder is tasked with both latent-to-pixel conversion and the final denoising step, producing the clean result directly in pixel space. This approach preserves the ability to generate fine details without incurring the runtime cost of a separate upsampling module. Our model supports diverse use cases, including text-to-video and image-to-video generation, with both capabilities trained simultaneously. It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video at 768x512 resolution in just 2 seconds on an Nvidia H100 GPU, outperforming all existing models of similar scale. The source code and pre-trained models are publicly available, setting a new benchmark for accessible and scalable video generation.

Tilus: A Virtual Machine for Arbitrary Low-Precision GPGPU Computation in LLM Serving

Serving Large Language Models (LLMs) is critical for AI-powered applications but demands substantial computational resources, particularly in memory bandwidth and computational throughput. Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption. Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two and suffer from suboptimal performance due to high-level GPU programming abstractions. These abstractions restrict critical optimizations, such as fine-grained register management and optimized memory access patterns, which are essential for efficient low-precision computations. In this paper, we introduce a virtual machine (VM) designed for General-Purpose GPU (GPGPU) computing, enabling support for low-precision data types with arbitrary bit widths while maintaining GPU programmability. The proposed VM features a thread-block-level programming model, a hierarchical memory space, a novel algebraic layout system, and extensive support for diverse low-precision data types. VM programs are compiled into highly efficient GPU programs with automatic vectorization and instruction selection. Extensive experiments demonstrate that our VM efficiently supports a full spectrum of low-precision data types, and outperforms state-of-the-art low-precision kernels on their supported types. Compared to existing compilers like Triton and Ladder, as well as hand-optimized kernels such as QuantLLM and Marlin, our VM achieves performance improvements of 1.75x, 2.61x, 1.29x and 1.03x, respectively.

MBQ: Modality-Balanced Quantization for Large Vision-Language Models

Vision-Language Models (VLMs) have enabled a variety of real-world applications. The large parameter size of VLMs brings large memory and computation overhead which poses significant challenges for deployment. Post-Training Quantization (PTQ) is an effective technique to reduce the memory and computation overhead. Existing PTQ methods mainly focus on large language models (LLMs), without considering the differences across other modalities. In this paper, we discover that there is a significant difference in sensitivity between language and vision tokens in large VLMs. Therefore, treating tokens from different modalities equally, as in existing PTQ methods, may over-emphasize the insensitive modalities, leading to significant accuracy loss. To deal with the above issue, we propose a simple yet effective method, Modality-Balanced Quantization (MBQ), for large VLMs. Specifically, MBQ incorporates the different sensitivities across modalities during the calibration process to minimize the reconstruction loss for better quantization parameters. Extensive experiments show that MBQ can significantly improve task accuracy by up to 4.4% and 11.6% under W3 and W4A8 quantization for 7B to 70B VLMs, compared to SOTA baselines. Additionally, we implement a W3 GPU kernel that fuses the dequantization and GEMV operators, achieving a 1.4x speedup on LLaVA-onevision-7B on the RTX 4090. The code is available at https://github.com/thu-nics/MBQ.

ShiftAddViT: Mixture of Multiplication Primitives Towards Efficient Vision Transformer

Vision Transformers (ViTs) have shown impressive performance and have become a unified backbone for multiple vision tasks. But both attention and multi-layer perceptions (MLPs) in ViTs are not efficient enough due to dense multiplications, resulting in costly training and inference. To this end, we propose to reparameterize the pre-trained ViT with a mixture of multiplication primitives, e.g., bitwise shifts and additions, towards a new type of multiplication-reduced model, dubbed ShiftAddViT, which aims for end-to-end inference speedups on GPUs without the need of training from scratch. Specifically, all MatMuls among queries, keys, and values are reparameterized by additive kernels, after mapping queries and keys to binary codes in Hamming space. The remaining MLPs or linear layers are then reparameterized by shift kernels. We utilize TVM to implement and optimize those customized kernels for practical hardware deployment on GPUs. We find that such a reparameterization on (quadratic or linear) attention maintains model accuracy, while inevitably leading to accuracy drops when being applied to MLPs. To marry the best of both worlds, we further propose a new mixture of experts (MoE) framework to reparameterize MLPs by taking multiplication or its primitives as experts, e.g., multiplication and shift, and designing a new latency-aware load-balancing loss. Such a loss helps to train a generic router for assigning a dynamic amount of input tokens to different experts according to their latency. In principle, the faster experts run, the larger amount of input tokens are assigned. Extensive experiments consistently validate the effectiveness of our proposed ShiftAddViT, achieving up to 5.18\times$ latency reductions on GPUs and 42.9%$ energy savings, while maintaining comparable accuracy as original or efficient ViTs.

FastAttention: Extend FlashAttention2 to NPUs and Low-resource GPUs

FlashAttention series has been widely applied in the inference of large language models (LLMs). However, FlashAttention series only supports the high-level GPU architectures, e.g., Ampere and Hopper. At present, FlashAttention series is not easily transferrable to NPUs and low-resource GPUs. Moreover, FlashAttention series is inefficient for multi- NPUs or GPUs inference scenarios. In this work, we propose FastAttention which pioneers the adaptation of FlashAttention series for NPUs and low-resource GPUs to boost LLM inference efficiency. Specifically, we take Ascend NPUs and Volta-based GPUs as representatives for designing our FastAttention. We migrate FlashAttention series to Ascend NPUs by proposing a novel two-level tiling strategy for runtime speedup, tiling-mask strategy for memory saving and the tiling-AllReduce strategy for reducing communication overhead, respectively. Besides, we adapt FlashAttention for Volta-based GPUs by redesigning the operands layout in shared memory and introducing a simple yet effective CPU-GPU cooperative strategy for efficient memory utilization. On Ascend NPUs, our FastAttention can achieve a 10.7times speedup compared to the standard attention implementation. Llama-7B within FastAttention reaches up to 5.16times higher throughput than within the standard attention. On Volta architecture GPUs, FastAttention yields 1.43times speedup compared to its equivalents in xformers. Pangu-38B within FastAttention brings 1.46times end-to-end speedup using FasterTransformer. Coupled with the propose CPU-GPU cooperative strategy, FastAttention supports a maximal input length of 256K on 8 V100 GPUs. All the codes will be made available soon.

The Fused Kernel Library: A C++ API to Develop Highly-Efficient GPU Libraries

Existing GPU libraries often struggle to fully exploit the parallel resources and on-chip memory (SRAM) of GPUs when chaining multiple GPU functions as individual kernels. While Kernel Fusion (KF) techniques like Horizontal Fusion (HF) and Vertical Fusion (VF) can mitigate this, current library implementations often require library developers to manually create fused kernels. Hence, library users rely on limited sets of pre-compiled or template-based fused kernels. This limits the use cases that can benefit from HF and VF and increases development costs. In order to solve these issues, we present a novel methodology for building GPU libraries that enables automatic on-demand HF and VF for arbitrary combinations of GPU library functions. Our methodology defines reusable, fusionable components that users combine via high-level programming interfaces. Leveraging C++17 metaprogramming features available in compilers like nvcc, our methodology generates a single and optimized fused kernel tailored to the user's specific sequence of operations at compile time, without needing a custom compiler or manual development and pre-compilation of kernel combinations. This approach abstracts low-level GPU complexities while maximizing GPU resource utilization and keeping intermediate data in SRAM. We provide an open-source implementation demonstrating significant speedups compared to traditional libraries in various benchmarks, validating the effectiveness of this methodology for improving GPU performance in the range of 2x to more than 1000x, while preserving high-level programmability.

DM-VTON: Distilled Mobile Real-time Virtual Try-On

The fashion e-commerce industry has witnessed significant growth in recent years, prompting exploring image-based virtual try-on techniques to incorporate Augmented Reality (AR) experiences into online shopping platforms. However, existing research has primarily overlooked a crucial aspect - the runtime of the underlying machine-learning model. While existing methods prioritize enhancing output quality, they often disregard the execution time, which restricts their applications on a limited range of devices. To address this gap, we propose Distilled Mobile Real-time Virtual Try-On (DM-VTON), a novel virtual try-on framework designed to achieve simplicity and efficiency. Our approach is based on a knowledge distillation scheme that leverages a strong Teacher network as supervision to guide a Student network without relying on human parsing. Notably, we introduce an efficient Mobile Generative Module within the Student network, significantly reducing the runtime while ensuring high-quality output. Additionally, we propose Virtual Try-on-guided Pose for Data Synthesis to address the limited pose variation observed in training images. Experimental results show that the proposed method can achieve 40 frames per second on a single Nvidia Tesla T4 GPU and only take up 37 MB of memory while producing almost the same output quality as other state-of-the-art methods. DM-VTON stands poised to facilitate the advancement of real-time AR applications, in addition to the generation of lifelike attired human figures tailored for diverse specialized training tasks. https://sites.google.com/view/ltnghia/research/DMVTON

Wan: Open and Advanced Large-Scale Video Generative Models

This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.

CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning

The exponential growth in demand for GPU computing resources, driven by the rapid advancement of Large Language Models, has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models (e.g. R1, o1) achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization. CUDA-L1 achieves performance improvements on the CUDA optimization task: trained on NVIDIA A100, it delivers an average speedup of x17.7 across all 250 CUDA kernels of KernelBench, with peak speedups reaching x449. Furthermore, the model also demonstrates excellent portability across GPU architectures, achieving average speedups of x17.8 on H100, x19.0 on RTX 3090, x16.5 on L40, x14.7 on H800, and x13.9 on H20 despite being optimized specifically for A100. Beyond these benchmark results, CUDA-L1 demonstrates several remarkable properties: 1) Discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) Uncovers fundamental principles of CUDA optimization; 3) Identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that harm performance. The capabilities of CUDA-L1 demonstrate that reinforcement learning can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. More importantly, the trained RL model extend the acquired reasoning abilities to new kernels. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.

DynamicVis: An Efficient and General Visual Foundation Model for Remote Sensing Image Understanding

The advancement of remote sensing technology has improved the spatial resolution of satellite imagery, facilitating more detailed visual representations for diverse interpretations. However, existing methods exhibit limited generalization capabilities across varied applications. While some contemporary foundation models demonstrate potential, they are hindered by insufficient cross-task adaptability and primarily process low-resolution imagery of restricted sizes, thus failing to fully exploit high-resolution data or leverage comprehensive large-scene semantics. Crucially, remote sensing imagery differs fundamentally from natural images, as key foreground targets (eg., maritime objects, artificial structures) often occupy minimal spatial proportions (~1%) and exhibit sparse distributions. Efficiently modeling cross-task generalizable knowledge from lengthy 2D tokens (~100,000) poses a significant challenge yet remains critical for remote sensing image understanding. Motivated by the selective attention mechanisms inherent to the human visual system, we propose DynamicVis, a dynamic visual perception foundation model for remote sensing imagery. The framework integrates a novel dynamic region perception backbone based on the selective state space model, which strategically balances localized detail extraction with global contextual integration, enabling computationally efficient encoding of large-scale data while maintaining architectural scalability. To enhance cross-task knowledge transferring, we introduce a multi-instance learning paradigm utilizing meta-embedding representations, trained on million-scale region-level annotations. Evaluations across nine downstream tasks demonstrate the model's versatility. DynamicVis achieves multi-level feature modeling with exceptional efficiency, processing (2048x2048) pixels with 97 ms latency (6% of ViT's) and 833 MB GPU memory (3% of ViT's).

HPCTransCompile: An AI Compiler Generated Dataset for High-Performance CUDA Transpilation and LLM Preliminary Exploration

The rapid growth of deep learning has driven exponential increases in model parameters and computational demands. NVIDIA GPUs and their CUDA-based software ecosystem provide robust support for parallel computing, significantly alleviating computational bottlenecks. Meanwhile, due to the cultivation of user programming habits and the high performance of GPUs, the CUDA ecosystem has established a dominant position in the field of parallel software. This dominance requires other hardware platforms to support CUDA-based software with performance portability. However, translating CUDA code to other platforms poses significant challenges due to differences in parallel programming paradigms and hardware architectures. Existing approaches rely on language extensions, domain-specific languages (DSLs), or compilers but face limitations in workload coverage and generalizability. Moreover, these methods often incur substantial development costs. Recently, LLMs have demonstrated extraordinary potential in various vertical domains, especially in code-related tasks. However, the performance of existing LLMs in CUDA transpilation, particularly for high-performance code, remains suboptimal. To address these challenges, we propose a novel framework for generating high-performance CUDA and corresponding platform code pairs, leveraging AI compiler and automatic optimization technology. We further enhance the framework with a graph-based data augmentation method and introduce HPCTransEval, a benchmark for evaluating LLM performance on CUDA transpilation. We conduct experiments using CUDA-to-CPU transpilation as a case study on leading LLMs. The speedup ratio of the CPU operators has an average improvemnet of 43.8\%, highlighting the potential of LLMs to address compatibility challenges within the CUDA ecosystem. Our code is available at https://github.com/PJLAB-CHIP/HPCTransCompile.

Real-Time Neural Light Field on Mobile Devices

Recent efforts in Neural Rendering Fields (NeRF) have shown impressive results on novel view synthesis by utilizing implicit neural representation to represent 3D scenes. Due to the process of volumetric rendering, the inference speed for NeRF is extremely slow, limiting the application scenarios of utilizing NeRF on resource-constrained hardware, such as mobile devices. Many works have been conducted to reduce the latency of running NeRF models. However, most of them still require high-end GPU for acceleration or extra storage memory, which is all unavailable on mobile devices. Another emerging direction utilizes the neural light field (NeLF) for speedup, as only one forward pass is performed on a ray to predict the pixel color. Nevertheless, to reach a similar rendering quality as NeRF, the network in NeLF is designed with intensive computation, which is not mobile-friendly. In this work, we propose an efficient network that runs in real-time on mobile devices for neural rendering. We follow the setting of NeLF to train our network. Unlike existing works, we introduce a novel network architecture that runs efficiently on mobile devices with low latency and small size, i.e., saving 15times sim 24times storage compared with MobileNeRF. Our model achieves high-resolution generation while maintaining real-time inference for both synthetic and real-world scenes on mobile devices, e.g., 18.04ms (iPhone 13) for rendering one 1008times756 image of real 3D scenes. Additionally, we achieve similar image quality as NeRF and better quality than MobileNeRF (PSNR 26.15 vs. 25.91 on the real-world forward-facing dataset).

Boost Vision Transformer with GPU-Friendly Sparsity and Quantization

The transformer extends its success from the language to the vision domain. Because of the stacked self-attention and cross-attention blocks, the acceleration deployment of vision transformer on GPU hardware is challenging and also rarely studied. This paper thoroughly designs a compression scheme to maximally utilize the GPU-friendly 2:4 fine-grained structured sparsity and quantization. Specially, an original large model with dense weight parameters is first pruned into a sparse one by 2:4 structured pruning, which considers the GPU's acceleration of 2:4 structured sparse pattern with FP16 data type, then the floating-point sparse model is further quantized into a fixed-point one by sparse-distillation-aware quantization aware training, which considers GPU can provide an extra speedup of 2:4 sparse calculation with integer tensors. A mixed-strategy knowledge distillation is used during the pruning and quantization process. The proposed compression scheme is flexible to support supervised and unsupervised learning styles. Experiment results show GPUSQ-ViT scheme achieves state-of-the-art compression by reducing vision transformer models 6.4-12.7 times on model size and 30.3-62 times on FLOPs with negligible accuracy degradation on ImageNet classification, COCO detection and ADE20K segmentation benchmarking tasks. Moreover, GPUSQ-ViT can boost actual deployment performance by 1.39-1.79 times and 3.22-3.43 times of latency and throughput on A100 GPU, and 1.57-1.69 times and 2.11-2.51 times improvement of latency and throughput on AGX Orin.

Model Quantization and Hardware Acceleration for Vision Transformers: A Comprehensive Survey

Vision Transformers (ViTs) have recently garnered considerable attention, emerging as a promising alternative to convolutional neural networks (CNNs) in several vision-related applications. However, their large model sizes and high computational and memory demands hinder deployment, especially on resource-constrained devices. This underscores the necessity of algorithm-hardware co-design specific to ViTs, aiming to optimize their performance by tailoring both the algorithmic structure and the underlying hardware accelerator to each other's strengths. Model quantization, by converting high-precision numbers to lower-precision, reduces the computational demands and memory needs of ViTs, allowing the creation of hardware specifically optimized for these quantized algorithms, boosting efficiency. This article provides a comprehensive survey of ViTs quantization and its hardware acceleration. We first delve into the unique architectural attributes of ViTs and their runtime characteristics. Subsequently, we examine the fundamental principles of model quantization, followed by a comparative analysis of the state-of-the-art quantization techniques for ViTs. Additionally, we explore the hardware acceleration of quantized ViTs, highlighting the importance of hardware-friendly algorithm design. In conclusion, this article will discuss ongoing challenges and future research paths. We consistently maintain the related open-source materials at https://github.com/DD-DuDa/awesome-vit-quantization-acceleration.

VideoLLaMB: Long-context Video Understanding with Recurrent Memory Bridges

Recent advancements in large-scale video-language models have shown significant potential for real-time planning and detailed interactions. However, their high computational demands and the scarcity of annotated datasets limit their practicality for academic researchers. In this work, we introduce VideoLLaMB, a novel framework that utilizes temporal memory tokens within bridge layers to allow for the encoding of entire video sequences alongside historical visual data, effectively preserving semantic continuity and enhancing model performance across various tasks. This approach includes recurrent memory tokens and a SceneTilling algorithm, which segments videos into independent semantic units to preserve semantic integrity. Empirically, VideoLLaMB significantly outstrips existing video-language models, demonstrating a 5.5 points improvement over its competitors across three VideoQA benchmarks, and 2.06 points on egocentric planning. Comprehensive results on the MVBench show that VideoLLaMB-7B achieves markedly better results than previous 7B models of same LLM. Remarkably, it maintains robust performance as PLLaVA even as video length increases up to 8 times. Besides, the frame retrieval results on our specialized Needle in a Video Haystack (NIAVH) benchmark, further validate VideoLLaMB's prowess in accurately identifying specific frames within lengthy videos. Our SceneTilling algorithm also enables the generation of streaming video captions directly, without necessitating additional training. In terms of efficiency, VideoLLaMB, trained on 16 frames, supports up to 320 frames on a single Nvidia A100 GPU with linear GPU memory scaling, ensuring both high performance and cost-effectiveness, thereby setting a new foundation for long-form video-language models in both academic and practical applications.

ElasticViT: Conflict-aware Supernet Training for Deploying Fast Vision Transformer on Diverse Mobile Devices

Neural Architecture Search (NAS) has shown promising performance in the automatic design of vision transformers (ViT) exceeding 1G FLOPs. However, designing lightweight and low-latency ViT models for diverse mobile devices remains a big challenge. In this work, we propose ElasticViT, a two-stage NAS approach that trains a high-quality ViT supernet over a very large search space that supports a wide range of mobile devices, and then searches an optimal sub-network (subnet) for direct deployment. However, prior supernet training methods that rely on uniform sampling suffer from the gradient conflict issue: the sampled subnets can have vastly different model sizes (e.g., 50M vs. 2G FLOPs), leading to different optimization directions and inferior performance. To address this challenge, we propose two novel sampling techniques: complexity-aware sampling and performance-aware sampling. Complexity-aware sampling limits the FLOPs difference among the subnets sampled across adjacent training steps, while covering different-sized subnets in the search space. Performance-aware sampling further selects subnets that have good accuracy, which can reduce gradient conflicts and improve supernet quality. Our discovered models, ElasticViT models, achieve top-1 accuracy from 67.2% to 80.0% on ImageNet from 60M to 800M FLOPs without extra retraining, outperforming all prior CNNs and ViTs in terms of accuracy and latency. Our tiny and small models are also the first ViT models that surpass state-of-the-art CNNs with significantly lower latency on mobile devices. For instance, ElasticViT-S1 runs 2.62x faster than EfficientNet-B0 with 0.1% higher accuracy.

I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference

Vision Transformers (ViTs) have achieved state-of-the-art performance on various computer vision applications. However, these models have considerable storage and computational overheads, making their deployment and efficient inference on edge devices challenging. Quantization is a promising approach to reducing model complexity, and the dyadic arithmetic pipeline can allow the quantized models to perform efficient integer-only inference. Unfortunately, dyadic arithmetic is based on the homogeneity condition in convolutional neural networks, which is not applicable to the non-linear components in ViTs, making integer-only inference of ViTs an open issue. In this paper, we propose I-ViT, an integer-only quantization scheme for ViTs, to enable ViTs to perform the entire computational graph of inference with integer arithmetic and bit-shifting, and without any floating-point arithmetic. In I-ViT, linear operations (e.g., MatMul and Dense) follow the integer-only pipeline with dyadic arithmetic, and non-linear operations (e.g., Softmax, GELU, and LayerNorm) are approximated by the proposed light-weight integer-only arithmetic methods. More specifically, I-ViT applies the proposed Shiftmax and ShiftGELU, which are designed to use integer bit-shifting to approximate the corresponding floating-point operations. We evaluate I-ViT on various benchmark models and the results show that integer-only INT8 quantization achieves comparable (or even slightly higher) accuracy to the full-precision (FP) baseline. Furthermore, we utilize TVM for practical hardware deployment on the GPU's integer arithmetic units, achieving 3.72sim4.11times inference speedup compared to the FP model. Code of both Pytorch and TVM is released at https://github.com/zkkli/I-ViT.

Quartet: Native FP4 Training Can Be Optimal for Large Language Models

The rapid advancement of large language models (LLMs) has been paralleled by unprecedented increases in computational demands, with training costs for state-of-the-art models doubling every few months. Training models directly in low-precision arithmetic offers a solution, by improving both computational throughput and energy efficiency. Specifically, NVIDIA's recent Blackwell architecture facilitates extremely low-precision operations, specifically FP4 variants, promising substantial efficiency gains. Yet, current algorithms for training LLMs in FP4 precision face significant accuracy degradation and often rely on mixed-precision fallbacks. In this paper, we systematically investigate hardware-supported FP4 training and introduce Quartet, a new approach enabling accurate, end-to-end FP4 training with all the major computations (in e.g. linear layers) being performed in low precision. Through extensive evaluations on Llama-type models, we reveal a new low-precision scaling law that quantifies performance trade-offs across varying bit-widths and allows us to identify a "near-optimal" low-precision training technique in terms of accuracy-vs-computation, called Quartet. We implement Quartet using optimized CUDA kernels tailored for NVIDIA Blackwell GPUs, and show that it can achieve state-of-the-art accuracy for FP4 precision, successfully training billion-scale models. Our method demonstrates that fully FP4-based training is a competitive alternative to standard-precision and FP8 training. Our code is available at https://github.com/IST-DASLab/Quartet.

SHViT: Single-Head Vision Transformer with Memory Efficient Macro Design

Recently, efficient Vision Transformers have shown great performance with low latency on resource-constrained devices. Conventionally, they use 4x4 patch embeddings and a 4-stage structure at the macro level, while utilizing sophisticated attention with multi-head configuration at the micro level. This paper aims to address computational redundancy at all design levels in a memory-efficient manner. We discover that using larger-stride patchify stem not only reduces memory access costs but also achieves competitive performance by leveraging token representations with reduced spatial redundancy from the early stages. Furthermore, our preliminary analyses suggest that attention layers in the early stages can be substituted with convolutions, and several attention heads in the latter stages are computationally redundant. To handle this, we introduce a single-head attention module that inherently prevents head redundancy and simultaneously boosts accuracy by parallelly combining global and local information. Building upon our solutions, we introduce SHViT, a Single-Head Vision Transformer that obtains the state-of-the-art speed-accuracy tradeoff. For example, on ImageNet-1k, our SHViT-S4 is 3.3x, 8.1x, and 2.4x faster than MobileViTv2 x1.0 on GPU, CPU, and iPhone12 mobile device, respectively, while being 1.3% more accurate. For object detection and instance segmentation on MS COCO using Mask-RCNN head, our model achieves performance comparable to FastViT-SA12 while exhibiting 3.8x and 2.0x lower backbone latency on GPU and mobile device, respectively.

Neural Video Compression with Feature Modulation

The emerging conditional coding-based neural video codec (NVC) shows superiority over commonly-used residual coding-based codec and the latest NVC already claims to outperform the best traditional codec. However, there still exist critical problems blocking the practicality of NVC. In this paper, we propose a powerful conditional coding-based NVC that solves two critical problems via feature modulation. The first is how to support a wide quality range in a single model. Previous NVC with this capability only supports about 3.8 dB PSNR range on average. To tackle this limitation, we modulate the latent feature of the current frame via the learnable quantization scaler. During the training, we specially design the uniform quantization parameter sampling mechanism to improve the harmonization of encoding and quantization. This results in a better learning of the quantization scaler and helps our NVC support about 11.4 dB PSNR range. The second is how to make NVC still work under a long prediction chain. We expose that the previous SOTA NVC has an obvious quality degradation problem when using a large intra-period setting. To this end, we propose modulating the temporal feature with a periodically refreshing mechanism to boost the quality. %Besides solving the above two problems, we also design a single model that can support both RGB and YUV colorspaces. Notably, under single intra-frame setting, our codec can achieve 29.7\% bitrate saving over previous SOTA NVC with 16\% MACs reduction. Our codec serves as a notable landmark in the journey of NVC evolution. The codes are at https://github.com/microsoft/DCVC.

ZeRO-Offload: Democratizing Billion-Scale Model Training

Large-scale model training has been a playing ground for a limited few requiring complex model refactoring and access to prohibitively expensive GPU clusters. ZeRO-Offload changes the large model training landscape by making large model training accessible to nearly everyone. It can train models with over 13 billion parameters on a single GPU, a 10x increase in size compared to popular framework such as PyTorch, and it does so without requiring any model change from the data scientists or sacrificing computational efficiency. ZeRO-Offload enables large model training by offloading data and compute to CPU. To preserve compute efficiency, it is designed to minimize the data movement to/from GPU, and reduce CPU compute time while maximizing memory savings on GPU. As a result, ZeRO-Offload can achieve 40 TFlops/GPU on a single NVIDIA V100 GPU for 10B parameter model compared to 30TF using PyTorch alone for a 1.4B parameter model, the largest that can be trained without running out of memory. ZeRO-Offload is also designed to scale on multiple-GPUs when available, offering near linear speedup on up to 128 GPUs. Additionally, it can work together with model parallelism to train models with over 70 billion parameters on a single DGX-2 box, a 4.5x increase in model size compared to using model parallelism alone. By combining compute and memory efficiency with ease-of-use, ZeRO-Offload democratizes large-scale model training making it accessible to even data scientists with access to just a single GPU.

DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale

The past several years have witnessed the success of transformer-based models, and their scale and application scenarios continue to grow aggressively. The current landscape of transformer models is increasingly diverse: the model size varies drastically with the largest being of hundred-billion parameters; the model characteristics differ due to the sparsity introduced by the Mixture-of-Experts; the target application scenarios can be latency-critical or throughput-oriented; the deployment hardware could be single- or multi-GPU systems with different types of memory and storage, etc. With such increasing diversity and the fast-evolving pace of transformer models, designing a highly performant and efficient inference system is extremely challenging. In this paper, we present DeepSpeed Inference, a comprehensive system solution for transformer model inference to address the above-mentioned challenges. DeepSpeed Inference consists of (1) a multi-GPU inference solution to minimize latency while maximizing the throughput of both dense and sparse transformer models when they fit in aggregate GPU memory, and (2) a heterogeneous inference solution that leverages CPU and NVMe memory in addition to the GPU memory and compute to enable high inference throughput with large models which do not fit in aggregate GPU memory. DeepSpeed Inference reduces latency by up to 7.3X over the state-of-the-art for latency-oriented scenarios and increases throughput by over 1.5x for throughput-oriented scenarios. Moreover, it enables trillion parameter scale inference under real-time latency constraints by leveraging hundreds of GPUs, an unprecedented scale for inference. It can inference 25x larger models than with GPU-only solutions, while delivering a high throughput of 84 TFLOPS (over 50% of A6000 peak).

Mélange: Cost Efficient Large Language Model Serving by Exploiting GPU Heterogeneity

Large language models (LLMs) are increasingly integrated into many online services. However, a major challenge in deploying LLMs is their high cost, due primarily to the use of expensive GPU instances. To address this problem, we find that the significant heterogeneity of GPU types presents an opportunity to increase GPU cost efficiency and reduce deployment costs. The broad and growing market of GPUs creates a diverse option space with varying costs and hardware specifications. Within this space, we show that there is not a linear relationship between GPU cost and performance, and identify three key LLM service characteristics that significantly affect which GPU type is the most cost effective: model request size, request rate, and latency service-level objective (SLO). We then present M\'elange, a framework for navigating the diversity of GPUs and LLM service specifications to derive the most cost-efficient set of GPUs for a given LLM service. We frame the task of GPU selection as a cost-aware bin-packing problem, where GPUs are bins with a capacity and cost, and items are request slices defined by a request size and rate. Upon solution, M\'elange derives the minimal-cost GPU allocation that adheres to a configurable latency SLO. Our evaluations across both real-world and synthetic datasets demonstrate that M\'elange can reduce deployment costs by up to 77% as compared to utilizing only a single GPU type, highlighting the importance of making heterogeneity-aware GPU provisioning decisions for LLM serving. Our source code is publicly available at https://github.com/tyler-griggs/melange-release.

HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach

Our paper addresses the complex task of transferring a hairstyle from a reference image to an input photo for virtual hair try-on. This task is challenging due to the need to adapt to various photo poses, the sensitivity of hairstyles, and the lack of objective metrics. The current state of the art hairstyle transfer methods use an optimization process for different parts of the approach, making them inexcusably slow. At the same time, faster encoder-based models are of very low quality because they either operate in StyleGAN's W+ space or use other low-dimensional image generators. Additionally, both approaches have a problem with hairstyle transfer when the source pose is very different from the target pose, because they either don't consider the pose at all or deal with it inefficiently. In our paper, we present the HairFast model, which uniquely solves these problems and achieves high resolution, near real-time performance, and superior reconstruction compared to optimization problem-based methods. Our solution includes a new architecture operating in the FS latent space of StyleGAN, an enhanced inpainting approach, and improved encoders for better alignment, color transfer, and a new encoder for post-processing. The effectiveness of our approach is demonstrated on realism metrics after random hairstyle transfer and reconstruction when the original hairstyle is transferred. In the most difficult scenario of transferring both shape and color of a hairstyle from different images, our method performs in less than a second on the Nvidia V100. Our code is available at https://github.com/AIRI-Institute/HairFastGAN.

A New Dataset and Comparative Study for Aphid Cluster Detection and Segmentation in Sorghum Fields

Aphid infestations are one of the primary causes of extensive damage to wheat and sorghum fields and are one of the most common vectors for plant viruses, resulting in significant agricultural yield losses. To address this problem, farmers often employ the inefficient use of harmful chemical pesticides that have negative health and environmental impacts. As a result, a large amount of pesticide is wasted on areas without significant pest infestation. This brings to attention the urgent need for an intelligent autonomous system that can locate and spray sufficiently large infestations selectively within the complex crop canopies. We have developed a large multi-scale dataset for aphid cluster detection and segmentation, collected from actual sorghum fields and meticulously annotated to include clusters of aphids. Our dataset comprises a total of 54,742 image patches, showcasing a variety of viewpoints, diverse lighting conditions, and multiple scales, highlighting its effectiveness for real-world applications. In this study, we trained and evaluated four real-time semantic segmentation models and three object detection models specifically for aphid cluster segmentation and detection. Considering the balance between accuracy and efficiency, Fast-SCNN delivered the most effective segmentation results, achieving 80.46% mean precision, 81.21% mean recall, and 91.66 frames per second (FPS). For object detection, RT-DETR exhibited the best overall performance with a 61.63% mean average precision (mAP), 92.6% mean recall, and 72.55 on an NVIDIA V100 GPU. Our experiments further indicate that aphid cluster segmentation is more suitable for assessing aphid infestations than using detection models.

Towards Label-Efficient Human Matting: A Simple Baseline for Weakly Semi-Supervised Trimap-Free Human Matting

This paper presents a new practical training method for human matting, which demands delicate pixel-level human region identification and significantly laborious annotations. To reduce the annotation cost, most existing matting approaches often rely on image synthesis to augment the dataset. However, the unnaturalness of synthesized training images brings in a new domain generalization challenge for natural images. To address this challenge, we introduce a new learning paradigm, weakly semi-supervised human matting (WSSHM), which leverages a small amount of expensive matte labels and a large amount of budget-friendly segmentation labels, to save the annotation cost and resolve the domain generalization problem. To achieve the goal of WSSHM, we propose a simple and effective training method, named Matte Label Blending (MLB), that selectively guides only the beneficial knowledge of the segmentation and matte data to the matting model. Extensive experiments with our detailed analysis demonstrate our method can substantially improve the robustness of the matting model using a few matte data and numerous segmentation data. Our training method is also easily applicable to real-time models, achieving competitive accuracy with breakneck inference speed (328 FPS on NVIDIA V100 GPU). The implementation code is available at https://github.com/clovaai/WSSHM.

GameIR: A Large-Scale Synthesized Ground-Truth Dataset for Image Restoration over Gaming Content

Image restoration methods like super-resolution and image synthesis have been successfully used in commercial cloud gaming products like NVIDIA's DLSS. However, restoration over gaming content is not well studied by the general public. The discrepancy is mainly caused by the lack of ground-truth gaming training data that match the test cases. Due to the unique characteristics of gaming content, the common approach of generating pseudo training data by degrading the original HR images results in inferior restoration performance. In this work, we develop GameIR, a large-scale high-quality computer-synthesized ground-truth dataset to fill in the blanks, targeting at two different applications. The first is super-resolution with deferred rendering, to support the gaming solution of rendering and transferring LR images only and restoring HR images on the client side. We provide 19200 LR-HR paired ground-truth frames coming from 640 videos rendered at 720p and 1440p for this task. The second is novel view synthesis (NVS), to support the multiview gaming solution of rendering and transferring part of the multiview frames and generating the remaining frames on the client side. This task has 57,600 HR frames from 960 videos of 160 scenes with 6 camera views. In addition to the RGB frames, the GBuffers during the deferred rendering stage are also provided, which can be used to help restoration. Furthermore, we evaluate several SOTA super-resolution algorithms and NeRF-based NVS algorithms over our dataset, which demonstrates the effectiveness of our ground-truth GameIR data in improving restoration performance for gaming content. Also, we test the method of incorporating the GBuffers as additional input information for helping super-resolution and NVS. We release our dataset and models to the general public to facilitate research on restoration methods over gaming content.

STIV: Scalable Text and Image Conditioned Video Generation

The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.

E2GC: Energy-efficient Group Convolution in Deep Neural Networks

The number of groups (g) in group convolution (GConv) is selected to boost the predictive performance of deep neural networks (DNNs) in a compute and parameter efficient manner. However, we show that naive selection of g in GConv creates an imbalance between the computational complexity and degree of data reuse, which leads to suboptimal energy efficiency in DNNs. We devise an optimum group size model, which enables a balance between computational cost and data movement cost, thus, optimize the energy-efficiency of DNNs. Based on the insights from this model, we propose an "energy-efficient group convolution" (E2GC) module where, unlike the previous implementations of GConv, the group size (G) remains constant. Further, to demonstrate the efficacy of the E2GC module, we incorporate this module in the design of MobileNet-V1 and ResNeXt-50 and perform experiments on two GPUs, P100 and P4000. We show that, at comparable computational complexity, DNNs with constant group size (E2GC) are more energy-efficient than DNNs with a fixed number of groups (FgGC). For example, on P100 GPU, the energy-efficiency of MobileNet-V1 and ResNeXt-50 is increased by 10.8% and 4.73% (respectively) when E2GC modules substitute the FgGC modules in both the DNNs. Furthermore, through our extensive experimentation with ImageNet-1K and Food-101 image classification datasets, we show that the E2GC module enables a trade-off between generalization ability and representational power of DNN. Thus, the predictive performance of DNNs can be optimized by selecting an appropriate G. The code and trained models are available at https://github.com/iithcandle/E2GC-release.

Auto-scaling Vision Transformers without Training

This work targets automated designing and scaling of Vision Transformers (ViTs). The motivation comes from two pain spots: 1) the lack of efficient and principled methods for designing and scaling ViTs; 2) the tremendous computational cost of training ViT that is much heavier than its convolution counterpart. To tackle these issues, we propose As-ViT, an auto-scaling framework for ViTs without training, which automatically discovers and scales up ViTs in an efficient and principled manner. Specifically, we first design a "seed" ViT topology by leveraging a training-free search process. This extremely fast search is fulfilled by a comprehensive study of ViT's network complexity, yielding a strong Kendall-tau correlation with ground-truth accuracies. Second, starting from the "seed" topology, we automate the scaling rule for ViTs by growing widths/depths to different ViT layers. This results in a series of architectures with different numbers of parameters in a single run. Finally, based on the observation that ViTs can tolerate coarse tokenization in early training stages, we propose a progressive tokenization strategy to train ViTs faster and cheaper. As a unified framework, As-ViT achieves strong performance on classification (83.5% top1 on ImageNet-1k) and detection (52.7% mAP on COCO) without any manual crafting nor scaling of ViT architectures: the end-to-end model design and scaling process cost only 12 hours on one V100 GPU. Our code is available at https://github.com/VITA-Group/AsViT.

Hardware and Software Platform Inference

It is now a common business practice to buy access to large language model (LLM) inference rather than self-host, because of significant upfront hardware infrastructure and energy costs. However, as a buyer, there is no mechanism to verify the authenticity of the advertised service including the serving hardware platform, e.g. that it is actually being served using an NVIDIA H100. Furthermore, there are reports suggesting that model providers may deliver models that differ slightly from the advertised ones, often to make them run on less expensive hardware. That way, a client pays premium for a capable model access on more expensive hardware, yet ends up being served by a (potentially less capable) cheaper model on cheaper hardware. In this paper we introduce \textbf{hardware and software platform inference (HSPI)} -- a method for identifying the underlying architecture and software stack of a (black-box) machine learning model solely based on its input-output behavior. Our method leverages the inherent differences of various architectures and compilers to distinguish between different types and software stacks. By analyzing the numerical patterns in the model's outputs, we propose a classification framework capable of accurately identifying the used for model inference as well as the underlying software configuration. Our findings demonstrate the feasibility of inferring type from black-box models. We evaluate HSPI against models served on different real hardware and find that in a white-box setting we can distinguish between different s with between 83.9% and 100% accuracy. Even in a black-box setting we are able to achieve results that are up to three times higher than random guess accuracy.

LLIA -- Enabling Low-Latency Interactive Avatars: Real-Time Audio-Driven Portrait Video Generation with Diffusion Models

Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness. However, their substantial computational requirements have constrained their deployment in real-time interactive avatar applications, where stringent speed, latency, and duration requirements are paramount. We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges. Firstly, we propose robust variable-length video generation to reduce the minimum time required to generate the initial video clip or state transitions, which significantly enhances the user experience. Secondly, we propose a consistency model training strategy for Audio-Image-to-Video to ensure real-time performance, enabling a fast few-step generation. Model quantization and pipeline parallelism are further employed to accelerate the inference speed. To mitigate the stability loss incurred by the diffusion process and model quantization, we introduce a new inference strategy tailored for long-duration video generation. These methods ensure real-time performance and low latency while maintaining high-fidelity output. Thirdly, we incorporate class labels as a conditional input to seamlessly switch between speaking, listening, and idle states. Lastly, we design a novel mechanism for fine-grained facial expression control to exploit our model's inherent capacity. Extensive experiments demonstrate that our approach achieves low-latency, fluid, and authentic two-way communication. On an NVIDIA RTX 4090D, our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.

Fine-Tuning Florence2 for Enhanced Object Detection in Un-constructed Environments: Vision-Language Model Approach

Vision-Language Models (VLMs) have emerged as powerful tools in artificial intelli-gence, capable of integrating textual and visual data for a unified understanding of complex scenes. While models such as Florence2, built on transformer architectures, have shown promise across general tasks, their performance in object detection within unstructured or cluttered environments remains underexplored. In this study, we fi-ne-tuned the Florence2 model for object detection tasks in non-constructed, complex environments. A comprehensive experimental framework was established involving multiple hardware configurations (NVIDIA T4, L4, and A100 GPUs), optimizers (AdamW, SGD), and varied hyperparameters including learning rates and LoRA (Low-Rank Adaptation) setups. Model training and evaluation were conducted on challenging datasets representative of real-world, disordered settings. The optimized Florence2 models exhibited significant improvements in object detection accuracy, with Mean Average Precision (mAP) metrics approaching or matching those of estab-lished models such as YOLOv8, YOLOv9, and YOLOv10. The integration of LoRA and careful fine-tuning of transformer layers contributed notably to these gains. Our find-ings highlight the adaptability of transformer-based VLMs like Florence2 for do-main-specific tasks, particularly in visually complex environments. The study under-scores the potential of fine-tuned VLMs to rival traditional convolution-based detec-tors, offering a flexible and scalable approach for advanced vision applications in re-al-world, unstructured settings.

VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations

Recent advancements in implicit neural representations have contributed to high-fidelity surface reconstruction and photorealistic novel view synthesis. However, the computational complexity inherent in these methodologies presents a substantial impediment, constraining the attainable frame rates and resolutions in practical applications. In response to this predicament, we propose VQ-NeRF, an effective and efficient pipeline for enhancing implicit neural representations via vector quantization. The essence of our method involves reducing the sampling space of NeRF to a lower resolution and subsequently reinstating it to the original size utilizing a pre-trained VAE decoder, thereby effectively mitigating the sampling time bottleneck encountered during rendering. Although the codebook furnishes representative features, reconstructing fine texture details of the scene remains challenging due to high compression rates. To overcome this constraint, we design an innovative multi-scale NeRF sampling scheme that concurrently optimizes the NeRF model at both compressed and original scales to enhance the network's ability to preserve fine details. Furthermore, we incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions. Extensive experiments demonstrate the effectiveness of our model in achieving the optimal trade-off between rendering quality and efficiency. Evaluation on the DTU, BlendMVS, and H3DS datasets confirms the superior performance of our approach.

Video-Infinity: Distributed Long Video Generation

Diffusion models have recently achieved remarkable results for video generation. Despite the encouraging performances, the generated videos are typically constrained to a small number of frames, resulting in clips lasting merely a few seconds. The primary challenges in producing longer videos include the substantial memory requirements and the extended processing time required on a single GPU. A straightforward solution would be to split the workload across multiple GPUs, which, however, leads to two issues: (1) ensuring all GPUs communicate effectively to share timing and context information, and (2) modifying existing video diffusion models, which are usually trained on short sequences, to create longer videos without additional training. To tackle these, in this paper we introduce Video-Infinity, a distributed inference pipeline that enables parallel processing across multiple GPUs for long-form video generation. Specifically, we propose two coherent mechanisms: Clip parallelism and Dual-scope attention. Clip parallelism optimizes the gathering and sharing of context information across GPUs which minimizes communication overhead, while Dual-scope attention modulates the temporal self-attention to balance local and global contexts efficiently across the devices. Together, the two mechanisms join forces to distribute the workload and enable the fast generation of long videos. Under an 8 x Nvidia 6000 Ada GPU (48G) setup, our method generates videos up to 2,300 frames in approximately 5 minutes, enabling long video generation at a speed 100 times faster than the prior methods.

Adding NVMe SSDs to Enable and Accelerate 100B Model Fine-tuning on a Single GPU

Recent advances in large language models have brought immense value to the world, with their superior capabilities stemming from the massive number of parameters they utilize. However, even the GPUs with the highest memory capacities, currently peaking at 80GB, are far from sufficient to accommodate these vast parameters and their associated optimizer states when conducting stochastic gradient descent-based optimization. One approach to hosting such huge models is to aggregate device memory from many GPUs. However, this approach introduces prohibitive costs for most academic researchers, who always have a limited budget for many high-end GPU servers. In this paper, we focus on huge model fine-tuning on a single, even low-end, GPU in a commodity server, which is accessible to most AI researchers. In such a scenario, the state-of-the-art work ZeRO-Infinity suffers from two severe issues when running in a commodity server: 1) low GPU utilization due to inefficient swapping, and 2) limited trainable model size due to CPU memory capacity. The underlying reason is that ZeRO-Infinity is optimized for running on high-end GPU servers. To this end, we present Fuyou, a low-cost training framework that enables efficient 100B huge model fine-tuning on a low-end server with a low-end GPU and limited CPU memory capacity. The key idea is to add the SSD-CPU communication as an optimization dimension and thus carefully co-optimize computation and data swapping from a systematic approach to maximize GPU utilization. The experimental results show that 1) Fuyou is able to fine-tune 175B GPT-3 on a consumer GPU RTX 4090 with high GPU utilization, while ZeRO-Infinity fails to fine-tune; and 2) when training a small GPT-3 13B model, Fuyou achieves 156 TFLOPS on an RTX 4090 GPU while ZeRO-Infinity only achieves 45 TFLOPS.

LPViT: Low-Power Semi-structured Pruning for Vision Transformers

Vision transformers have emerged as a promising alternative to convolutional neural networks for various image analysis tasks, offering comparable or superior performance. However, one significant drawback of ViTs is their resource-intensive nature, leading to increased memory footprint, computation complexity, and power consumption. To democratize this high-performance technology and make it more environmentally friendly, it is essential to compress ViT models, reducing their resource requirements while maintaining high performance. In this paper, we introduce a new block-structured pruning to address the resource-intensive issue for ViTs, offering a balanced trade-off between accuracy and hardware acceleration. Unlike unstructured pruning or channel-wise structured pruning, block pruning leverages the block-wise structure of linear layers, resulting in more efficient matrix multiplications. To optimize this pruning scheme, our paper proposes a novel hardware-aware learning objective that simultaneously maximizes speedup and minimizes power consumption during inference, tailored to the block sparsity structure. This objective eliminates the need for empirical look-up tables and focuses solely on reducing parametrized layer connections. Moreover, our paper provides a lightweight algorithm to achieve post-training pruning for ViTs, utilizing second-order Taylor approximation and empirical optimization to solve the proposed hardware-aware objective. Extensive experiments on ImageNet are conducted across various ViT architectures, including DeiT-B and DeiT-S, demonstrating competitive performance with other pruning methods and achieving a remarkable balance between accuracy preservation and power savings. Especially, we achieve up to 3.93x and 1.79x speedups on dedicated hardware and GPUs respectively for DeiT-B, and also observe an inference power reduction by 1.4x on real-world GPUs.

Ovis2.5 Technical Report

We present Ovis2.5, a successor to Ovis2 designed for native-resolution visual perception and strong multimodal reasoning. Ovis2.5 integrates a native-resolution vision transformer that processes images at their native, variable resolutions, avoiding the degradation from fixed-resolution tiling and preserving both fine detail and global layout -- crucial for visually dense content like complex charts. To strengthen reasoning, we train the model to move beyond linear chain-of-thought and perform reflection -- including self-checking and revision. This advanced capability is exposed as an optional "thinking mode" at inference time, allowing users to trade latency for enhanced accuracy on difficult inputs. The model is trained via a comprehensive five-phase curriculum that progressively builds its skills. The process begins with foundational visual and multimodal pretraining, advances through large-scale instruction tuning, and culminates in alignment and reasoning enhancement using DPO and GRPO. To scale these upgrades efficiently, we employ multimodal data packing and hybrid parallelism, yielding a significant end-to-end speedup. We release two open-source models: Ovis2.5-9B and Ovis2.5-2B. The latter continues the "small model, big performance" philosophy of Ovis2, making it ideal for resource-constrained, on-device scenarios. On the OpenCompass multimodal leaderboard, Ovis2.5-9B averages 78.3, marking a substantial improvement over its predecessor, Ovis2-8B, and achieving state-of-the-art results among open-source MLLMs in the sub-40B parameter range; Ovis2.5-2B scores 73.9, establishing SOTA for its size. Beyond aggregate scores, Ovis2.5 achieves leading results on STEM benchmarks, exhibits strong capabilities on grounding and video tasks, and achieves open-source SOTA at its scale for complex chart analysis.

Benchmarking and Dissecting the Nvidia Hopper GPU Architecture

Graphics processing units (GPUs) are continually evolving to cater to the computational demands of contemporary general-purpose workloads, particularly those driven by artificial intelligence (AI) utilizing deep learning techniques. A substantial body of studies have been dedicated to dissecting the microarchitectural metrics characterizing diverse GPU generations, which helps researchers understand the hardware details and leverage them to optimize the GPU programs. However, the latest Hopper GPUs present a set of novel attributes, including new tensor cores supporting FP8, DPX, and distributed shared memory. Their details still remain mysterious in terms of performance and operational characteristics. In this research, we propose an extensive benchmarking study focused on the Hopper GPU. The objective is to unveil its microarchitectural intricacies through an examination of the new instruction-set architecture (ISA) of Nvidia GPUs and the utilization of new CUDA APIs. Our approach involves two main aspects. Firstly, we conduct conventional latency and throughput comparison benchmarks across the three most recent GPU architectures, namely Hopper, Ada, and Ampere. Secondly, we delve into a comprehensive discussion and benchmarking of the latest Hopper features, encompassing the Hopper DPX dynamic programming (DP) instruction set, distributed shared memory, and the availability of FP8 tensor cores. The microbenchmarking results we present offer a deeper understanding of the novel GPU AI function units and programming features introduced by the Hopper architecture. This newfound understanding is expected to greatly facilitate software optimization and modeling efforts for GPU architectures. To the best of our knowledge, this study makes the first attempt to demystify the tensor core performance and programming instruction sets unique to Hopper GPUs.