- The Malaysian Election Corpus (MECo): Federal and State-Level Election Results from 1955 to 2025 Empirical research and public knowledge on Malaysia's elections have long been constrained by a lack of high-quality open data, particularly in the absence of a Freedom of Information framework. We introduce the Malaysian Election Corpus (MECo; ElectionData.MY), an open-access panel database covering all federal and state general elections from 1955 to the present, as well as by-elections from 2008 onward. MECo includes candidate- and constituency-level results for nearly 10,000 contests across seven decades, standardised with unique identifiers for candidates, parties, and constituencies. The database also provides summary statistics on electorate size, voter turnout, rejected votes, and unreturned ballots. This is the most well-curated publicly available data on Malaysian elections, and will unlock new opportunities for research, data journalism, and civic engagement. 1 authors · May 10
1 Metadata Conditioning Accelerates Language Model Pre-training The vast diversity of styles, domains, and quality levels present in language model pre-training corpora is essential in developing general model capabilities, but efficiently learning and deploying the correct behaviors exemplified in each of these heterogeneous data sources is challenging. To address this, we propose a new method, termed Metadata Conditioning then Cooldown (MeCo), to incorporate additional learning cues during pre-training. MeCo first provides metadata (e.g., URLs like en.wikipedia.org) alongside the text during training and later uses a cooldown phase with only the standard text, thereby enabling the model to function normally even without metadata. MeCo significantly accelerates pre-training across different model scales (600M to 8B parameters) and training sources (C4, RefinedWeb, and DCLM). For instance, a 1.6B language model trained with MeCo matches the downstream task performance of standard pre-training while using 33% less data. Additionally, MeCo enables us to steer language models by conditioning the inference prompt on either real or fabricated metadata that encodes the desired properties of the output: for example, prepending wikipedia.org to reduce harmful generations or factquizmaster.com (fabricated) to improve common knowledge task performance. We also demonstrate that MeCo is compatible with different types of metadata, such as model-generated topics. MeCo is remarkably simple, adds no computational overhead, and demonstrates promise in producing more capable and steerable language models. 6 authors · Jan 3
- Measure Twice, Cut Once: Grasping Video Structures and Event Semantics with LLMs for Video Temporal Localization Localizing user-queried events through natural language is crucial for video understanding models. Recent methods predominantly adapt Video LLMs to generate event boundary timestamps to handle temporal localization tasks, which struggle to leverage LLMs' powerful semantic understanding. In this work, we introduce MeCo, a novel timestamp-free framework that enables video LLMs to fully harness their intrinsic semantic capabilities for temporal localization tasks. Rather than outputting boundary timestamps, MeCo partitions videos into holistic event and transition segments based on the proposed structural token generation and grounding pipeline, derived from video LLMs' temporal structure understanding capability. We further propose a query-focused captioning task that compels the LLM to extract fine-grained, event-specific details, bridging the gap between localization and higher-level semantics and enhancing localization performance. Extensive experiments on diverse temporal localization tasks show that MeCo consistently outperforms boundary-centric methods, underscoring the benefits of a semantic-driven approach for temporal localization with video LLMs. 3 authors · Mar 11