new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 20

Self-Prompt Tuning: Enable Autonomous Role-Playing in LLMs

Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this https://anonymous.4open.science/r/Self-Prompt-Tuning-739E/{url}.

Toward Advancing License Plate Super-Resolution in Real-World Scenarios: A Dataset and Benchmark

Recent advancements in super-resolution for License Plate Recognition (LPR) have sought to address challenges posed by low-resolution (LR) and degraded images in surveillance, traffic monitoring, and forensic applications. However, existing studies have relied on private datasets and simplistic degradation models. To address this gap, we introduce UFPR-SR-Plates, a novel dataset containing 10,000 tracks with 100,000 paired low and high-resolution license plate images captured under real-world conditions. We establish a benchmark using multiple sequential LR and high-resolution (HR) images per vehicle -- five of each -- and two state-of-the-art models for super-resolution of license plates. We also investigate three fusion strategies to evaluate how combining predictions from a leading Optical Character Recognition (OCR) model for multiple super-resolved license plates enhances overall performance. Our findings demonstrate that super-resolution significantly boosts LPR performance, with further improvements observed when applying majority vote-based fusion techniques. Specifically, the Layout-Aware and Character-Driven Network (LCDNet) model combined with the Majority Vote by Character Position (MVCP) strategy led to the highest recognition rates, increasing from 1.7% with low-resolution images to 31.1% with super-resolution, and up to 44.7% when combining OCR outputs from five super-resolved images. These findings underscore the critical role of super-resolution and temporal information in enhancing LPR accuracy under real-world, adverse conditions. The proposed dataset is publicly available to support further research and can be accessed at: https://valfride.github.io/nascimento2024toward/

Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection

To develop a trustworthy AI system, which aim to identify the input regions that most influence the models decisions. The primary task of existing attribution methods lies in efficiently and accurately identifying the relationships among input-prediction interactions. Particularly when the input data is discrete, such as images, analyzing the relationship between inputs and outputs poses a significant challenge due to the combinatorial explosion. In this paper, we propose a novel and efficient black-box attribution mechanism, LiMA (Less input is More faithful for Attribution), which reformulates the attribution of important regions as an optimization problem for submodular subset selection. First, to accurately assess interactions, we design a submodular function that quantifies subset importance and effectively captures their impact on decision outcomes. Then, efficiently ranking input sub-regions by their importance for attribution, we improve optimization efficiency through a novel bidirectional greedy search algorithm. LiMA identifies both the most and least important samples while ensuring an optimal attribution boundary that minimizes errors. Extensive experiments on eight foundation models demonstrate that our method provides faithful interpretations with fewer regions and exhibits strong generalization, shows an average improvement of 36.3% in Insertion and 39.6% in Deletion. Our method also outperforms the naive greedy search in attribution efficiency, being 1.6 times faster. Furthermore, when explaining the reasons behind model prediction errors, the average highest confidence achieved by our method is, on average, 86.1% higher than that of state-of-the-art attribution algorithms. The code is available at https://github.com/RuoyuChen10/LIMA.

CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models

This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.

Datasets for Large Language Models: A Comprehensive Survey

This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.

Benchmarks for Pirá 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change

Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset.

Large Language Model as a User Simulator

The unparalleled performance of closed-sourced ChatGPT has sparked efforts towards its democratization, with notable strides made by leveraging real user and ChatGPT conversations, as evidenced by Vicuna. However, while current endeavors like Baize and UltraChat aim to auto-generate conversational data due to challenges in gathering human participation, they primarily rely on ChatGPT to simulate human behaviors based on directives rather than genuine human learning. This results in a limited scope, diminished diversity, and an absence of genuine multi-round conversational dynamics. To address the above issues, we innovatively target human questions extracted from genuine human-machine conversations as a learning goal and train a user simulator, UserGPT, to produce a high-quality human-centric synthetic conversation dataset, RealChat. Subsequently, this dataset trains our assistant model, ReaLM. Experimentally, ReaLM outpaces baseline models in both Vicuna-Bench and MT-Bench by pairwise comparison when considering equivalent training set sizes, and manual evaluation also shows that our model is highly competitive. Impressively, when fine-tuned with the latest LLaMA 2 model, ReaLM secured a leading score of 6.33 in the MT-Bench, outshining the contemporary same-scale models, including the LLaMA-2-7B-chat model. Further in-depth analysis demonstrates the scalability and transferability of our approach. A preliminary exploration into the interplay between training set data quality and resultant model performance is also undertaken, laying a robust groundwork for future investigations. The code is available at https://github.com/FreedomIntelligence/ReaLM.

RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following

Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.

Enhancing Chat Language Models by Scaling High-quality Instructional Conversations

Fine-tuning on instruction data has been widely validated as an effective practice for implementing chat language models like ChatGPT. Scaling the diversity and quality of such data, although straightforward, stands a great chance of leading to improved performance. This paper aims to improve the upper bound of open-source models further. We first provide a systematically designed, diverse, informative, large-scale dataset of instructional conversations, UltraChat, which does not involve human queries. Our objective is to capture the breadth of interactions that a human might have with an AI assistant and employs a comprehensive framework to generate multi-turn conversation iteratively. UltraChat contains 1.5 million high-quality multi-turn dialogues and covers a wide range of topics and instructions. Our statistical analysis of UltraChat reveals its superiority in various key metrics, including scale, average length, diversity, coherence, etc., solidifying its position as a leading open-source dataset. Building upon UltraChat, we fine-tune a LLaMA model to create a powerful conversational model, UltraLLaMA. Our evaluations indicate that UltraLLaMA consistently outperforms other open-source models, including Vicuna, the previously recognized state-of-the-art open-source model. The dataset and the model will be publicly released\url{https://github.com/thunlp/UltraChat}.

Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions

Large Language Models (LLMs) have demonstrated wide-ranging applications across various fields and have shown significant potential in the academic peer-review process. However, existing applications are primarily limited to static review generation based on submitted papers, which fail to capture the dynamic and iterative nature of real-world peer reviews. In this paper, we reformulate the peer-review process as a multi-turn, long-context dialogue, incorporating distinct roles for authors, reviewers, and decision makers. We construct a comprehensive dataset containing over 26,841 papers with 92,017 reviews collected from multiple sources, including the top-tier conference and prestigious journal. This dataset is meticulously designed to facilitate the applications of LLMs for multi-turn dialogues, effectively simulating the complete peer-review process. Furthermore, we propose a series of metrics to evaluate the performance of LLMs for each role under this reformulated peer-review setting, ensuring fair and comprehensive evaluations. We believe this work provides a promising perspective on enhancing the LLM-driven peer-review process by incorporating dynamic, role-based interactions. It aligns closely with the iterative and interactive nature of real-world academic peer review, offering a robust foundation for future research and development in this area. We open-source the dataset at https://github.com/chengtan9907/ReviewMT.

PMC-LLaMA: Towards Building Open-source Language Models for Medicine

Recently, Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding. While demonstrating proficiency in everyday conversations and question-answering situations, these models frequently struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge. In this paper, we describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA. Our contributions are threefold: (i) we systematically investigate the process of adapting a general-purpose foundation language model towards medical domain, this involves data-centric knowledge injection through the integration of 4.8M biomedical academic papers and 30K medical textbooks, as well as comprehensive fine-tuning for alignment with domain-specific instructions; (ii) we contribute a large-scale, comprehensive dataset for instruction tuning. This dataset encompasses medical question-answering (QA), rationale for reasoning, and conversational dialogues, comprising a total of 202M tokens; (iii) we conduct thorough ablation studies to demonstrate the effectiveness of each proposed component. While evaluating on various public medical question-answering benchmarks, our lightweight PMCLLaMA, which consists of only 13 billion parameters, exhibits superior performance, even surpassing ChatGPT. All models, codes, datasets can be found in https://github.com/chaoyi-wu/PMC-LLaMA.

MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension

The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.

DAPFAM: A Domain-Aware Patent Retrieval Dataset Aggregated at the Family Level

In the landscape of publicly available patent retrieval datasets, the need for explicit indomain and out-of-domain labeling, multi-jurisdiction coverage, balanced query domain representation and manageable sizes that support sub document level experiments on moderate computational resources is often overlooked. To address these gaps, we propose DAPFAM, a new open access domain-aware patent retrieval dataset constructed at the simple-family level. The dataset contains 1,247 domain balanced full text query families and 45,336 full text target families. The dataset is enriched by clear relevance judgments (forward/backward citations as positive links, random negatives), as well as explicit in-domain or out-of-domain relationships via a novel proposed labelling scheme based on via International Patent Classification (IPC) codes, resulting in 49,869 evaluation pairs. The dataset is multi jurisdictional, requires little to no preprocessing for retrieval evaluation, and remains of a size manageable for entities with limited ressources allowing for sub document level retrieval experiments without excessive computational costs. We describe our three-step data-curation pipeline, present comprehensive dataset statistics, and provide baseline experiments using lexical and neural retrieval methods. Our baseline experiments highlight significant challenges in crossdomain patent retrieval. The dataset will be publicly available (for now the access link is this repository: https://osf.io/vbyzd/?view_only=1a40242e0d1941a58aa854af3e50cf6b).

Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study on Telematics Data with ChatGPT

This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT. Synthetic datasets present an effective solution to challenges pertaining to data privacy, scarcity, and control over variables - characteristics that make them particularly valuable for research pursuits. The utility of these datasets, however, largely depends on their quality, measured through the lenses of diversity, relevance, and coherence. To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset. The experiment involved an iterative guidance of ChatGPT, progressively refining prompts and culminating in the creation of a comprehensive dataset for a hypothetical urban planning scenario in Columbus, Ohio. Upon generation, the synthetic dataset was subjected to an evaluation, focusing on the previously identified quality parameters and employing descriptive statistics and visualization techniques for a thorough analysis. Despite synthetic datasets not serving as perfect replacements for actual world data, their potential in specific use-cases, when executed with precision, is significant. This research underscores the potential of AI models like ChatGPT in enhancing data availability for complex sectors like telematics, thus paving the way for a myriad of new research opportunities.

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.

DCA-Bench: A Benchmark for Dataset Curation Agents

The quality of datasets plays an increasingly crucial role in the research and development of modern artificial intelligence (AI). Despite the proliferation of open dataset platforms nowadays, data quality issues, such as insufficient documentation, inaccurate annotations, and ethical concerns, remain common in datasets widely used in AI. Furthermore, these issues are often subtle and difficult to be detected by rule-based scripts, requiring expensive manual identification and verification by dataset users or maintainers. With the increasing capability of large language models (LLMs), it is promising to streamline the curation of datasets with LLM agents. In this work, as the initial step towards this goal, we propose a dataset curation agent benchmark, DCA-Bench, to measure LLM agents' capability of detecting hidden dataset quality issues. Specifically, we collect diverse real-world dataset quality issues from eight open dataset platforms as a testbed. Additionally, to establish an automatic pipeline for evaluating the success of LLM agents, which requires a nuanced understanding of the agent outputs, we implement a dedicated Evaluator using another LLM agent. We demonstrate that the LLM-based Evaluator empirically aligns well with human evaluation, allowing reliable automatic evaluation on the proposed benchmark. We further conduct experiments on several baseline LLM agents on the proposed benchmark and demonstrate the complexity of the task, indicating that applying LLMs to real-world dataset curation still requires further in-depth exploration and innovation. Finally, the proposed benchmark can also serve as a testbed for measuring the capability of LLMs in problem discovery rather than just problem-solving. The benchmark suite is available at https://github.com/TRAIS-Lab/dca-bench.

FlexOlmo: Open Language Models for Flexible Data Use

We introduce FlexOlmo, a new class of language models (LMs) that supports (1) distributed training without data sharing, where different model parameters are independently trained on closed datasets, and (2) data-flexible inference, where these parameters along with their associated data can be flexibly included or excluded from model inferences with no further training. FlexOlmo employs a mixture-of-experts (MoE) architecture where each expert is trained independently on closed datasets and later integrated through a new domain-informed routing without any joint training. FlexOlmo is trained on FlexMix, a corpus we curate comprising publicly available datasets alongside seven domain-specific sets, representing realistic approximations of closed sets. We evaluate models with up to 37 billion parameters (20 billion active) on 31 diverse downstream tasks. We show that a general expert trained on public data can be effectively combined with independently trained experts from other data owners, leading to an average 41% relative improvement while allowing users to opt out of certain data based on data licensing or permission requirements. Our approach also outperforms prior model merging methods by 10.1% on average and surpasses the standard MoE trained without data restrictions using the same training FLOPs. Altogether, this research presents a solution for both data owners and researchers in regulated industries with sensitive or protected data. FlexOlmo enables benefiting from closed data while respecting data owners' preferences by keeping their data local and supporting fine-grained control of data access during inference.

GENEVA: Benchmarking Generalizability for Event Argument Extraction with Hundreds of Event Types and Argument Roles

Recent works in Event Argument Extraction (EAE) have focused on improving model generalizability to cater to new events and domains. However, standard benchmarking datasets like ACE and ERE cover less than 40 event types and 25 entity-centric argument roles. Limited diversity and coverage hinder these datasets from adequately evaluating the generalizability of EAE models. In this paper, we first contribute by creating a large and diverse EAE ontology. This ontology is created by transforming FrameNet, a comprehensive semantic role labeling (SRL) dataset for EAE, by exploiting the similarity between these two tasks. Then, exhaustive human expert annotations are collected to build the ontology, concluding with 115 events and 220 argument roles, with a significant portion of roles not being entities. We utilize this ontology to further introduce GENEVA, a diverse generalizability benchmarking dataset comprising four test suites, aimed at evaluating models' ability to handle limited data and unseen event type generalization. We benchmark six EAE models from various families. The results show that owing to non-entity argument roles, even the best-performing model can only achieve 39% F1 score, indicating how GENEVA provides new challenges for generalization in EAE. Overall, our large and diverse EAE ontology can aid in creating more comprehensive future resources, while GENEVA is a challenging benchmarking dataset encouraging further research for improving generalizability in EAE. The code and data can be found at https://github.com/PlusLabNLP/GENEVA.

MoreHopQA: More Than Multi-hop Reasoning

Most existing multi-hop datasets are extractive answer datasets, where the answers to the questions can be extracted directly from the provided context. This often leads models to use heuristics or shortcuts instead of performing true multi-hop reasoning. In this paper, we propose a new multi-hop dataset, MoreHopQA, which shifts from extractive to generative answers. Our dataset is created by utilizing three existing multi-hop datasets: HotpotQA, 2WikiMultihopQA, and MuSiQue. Instead of relying solely on factual reasoning, we enhance the existing multi-hop questions by adding another layer of questioning that involves one, two, or all three of the following types of reasoning: commonsense, arithmetic, and symbolic. Our dataset is created through a semi-automated process, resulting in a dataset with 1,118 samples that have undergone human verification. We then use our dataset to evaluate five different large language models: Mistral 7B, Gemma 7B, Llama 3 (8B and 70B), and GPT-4. We also design various cases to analyze the reasoning steps in the question-answering process. Our results show that models perform well on initial multi-hop questions but struggle with our extended questions, indicating that our dataset is more challenging than previous ones. Our analysis of question decomposition reveals that although models can correctly answer questions, only a portion - 38.7% for GPT-4 and 33.4% for Llama3-70B - achieve perfect reasoning, where all corresponding sub-questions are answered correctly. Evaluation code and data are available at https://github.com/Alab-NII/morehopqa

The Lucie-7B LLM and the Lucie Training Dataset: Open resources for multilingual language generation

We present both the Lucie Training Dataset and the Lucie-7B foundation model. The Lucie Training Dataset is a multilingual collection of textual corpora centered around French and designed to offset anglo-centric biases found in many datasets for large language model pretraining. Its French data is pulled not only from traditional web sources, but also from French cultural heritage documents, filling an important gap in modern datasets. Beyond French, which makes up the largest share of the data, we added documents to support several other European languages, including English, Spanish, German, and Italian. Apart from its value as a resource for French language and culture, an important feature of this dataset is that it prioritizes data rights by minimizing copyrighted material. In addition, building on the philosophy of past open projects, it is redistributed in the form used for training and its processing is described on Hugging Face and GitHub. The Lucie-7B foundation model is trained on equal amounts of data in French and English -- roughly 33% each -- in an effort to better represent cultural aspects of French-speaking communities. We also describe two instruction fine-tuned models, Lucie-7B-Instruct-v1.1 and Lucie-7B-Instruct-human-data, which we release as demonstrations of Lucie-7B in use. These models achieve promising results compared to state-of-the-art models, demonstrating that an open approach prioritizing data rights can still deliver strong performance. We see these models as an initial step toward developing more performant, aligned models in the near future. Model weights for Lucie-7B and the Lucie instruct models, along with intermediate checkpoints for the former, are published on Hugging Face, while model training and data preparation code is available on GitHub. This makes Lucie-7B one of the first OSI compliant language models according to the new OSI definition.

VNHSGE: VietNamese High School Graduation Examination Dataset for Large Language Models

The VNHSGE (VietNamese High School Graduation Examination) dataset, developed exclusively for evaluating large language models (LLMs), is introduced in this article. The dataset, which covers nine subjects, was generated from the Vietnamese National High School Graduation Examination and comparable tests. 300 literary essays have been included, and there are over 19,000 multiple-choice questions on a range of topics. The dataset assesses LLMs in multitasking situations such as question answering, text generation, reading comprehension, visual question answering, and more by including both textual data and accompanying images. Using ChatGPT and BingChat, we evaluated LLMs on the VNHSGE dataset and contrasted their performance with that of Vietnamese students to see how well they performed. The results show that ChatGPT and BingChat both perform at a human level in a number of areas, including literature, English, history, geography, and civics education. They still have space to grow, though, especially in the areas of mathematics, physics, chemistry, and biology. The VNHSGE dataset seeks to provide an adequate benchmark for assessing the abilities of LLMs with its wide-ranging coverage and variety of activities. We intend to promote future developments in the creation of LLMs by making this dataset available to the scientific community, especially in resolving LLMs' limits in disciplines involving mathematics and the natural sciences.

Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI

As research and industry moves towards large-scale models capable of numerous downstream tasks, the complexity of understanding multi-modal datasets that give nuance to models rapidly increases. A clear and thorough understanding of a dataset's origins, development, intent, ethical considerations and evolution becomes a necessary step for the responsible and informed deployment of models, especially those in people-facing contexts and high-risk domains. However, the burden of this understanding often falls on the intelligibility, conciseness, and comprehensiveness of the documentation. It requires consistency and comparability across the documentation of all datasets involved, and as such documentation must be treated as a user-centric product in and of itself. In this paper, we propose Data Cards for fostering transparent, purposeful and human-centered documentation of datasets within the practical contexts of industry and research. Data Cards are structured summaries of essential facts about various aspects of ML datasets needed by stakeholders across a dataset's lifecycle for responsible AI development. These summaries provide explanations of processes and rationales that shape the data and consequently the models, such as upstream sources, data collection and annotation methods; training and evaluation methods, intended use; or decisions affecting model performance. We also present frameworks that ground Data Cards in real-world utility and human-centricity. Using two case studies, we report on desirable characteristics that support adoption across domains, organizational structures, and audience groups. Finally, we present lessons learned from deploying over 20 Data Cards.

Datasheets Aren't Enough: DataRubrics for Automated Quality Metrics and Accountability

High-quality datasets are fundamental to training and evaluating machine learning models, yet their creation-especially with accurate human annotations-remains a significant challenge. Many dataset paper submissions lack originality, diversity, or rigorous quality control, and these shortcomings are often overlooked during peer review. Submissions also frequently omit essential details about dataset construction and properties. While existing tools such as datasheets aim to promote transparency, they are largely descriptive and do not provide standardized, measurable methods for evaluating data quality. Similarly, metadata requirements at conferences promote accountability but are inconsistently enforced. To address these limitations, this position paper advocates for the integration of systematic, rubric-based evaluation metrics into the dataset review process-particularly as submission volumes continue to grow. We also explore scalable, cost-effective methods for synthetic data generation, including dedicated tools and LLM-as-a-judge approaches, to support more efficient evaluation. As a call to action, we introduce DataRubrics, a structured framework for assessing the quality of both human- and model-generated datasets. Leveraging recent advances in LLM-based evaluation, DataRubrics offers a reproducible, scalable, and actionable solution for dataset quality assessment, enabling both authors and reviewers to uphold higher standards in data-centric research. We also release code to support reproducibility of LLM-based evaluations at https://github.com/datarubrics/datarubrics.

RedPajama: an Open Dataset for Training Large Language Models

Large language models are increasingly becoming a cornerstone technology in artificial intelligence, the sciences, and society as a whole, yet the optimal strategies for dataset composition and filtering remain largely elusive. Many of the top-performing models lack transparency in their dataset curation and model development processes, posing an obstacle to the development of fully open language models. In this paper, we identify three core data-related challenges that must be addressed to advance open-source language models. These include (1) transparency in model development, including the data curation process, (2) access to large quantities of high-quality data, and (3) availability of artifacts and metadata for dataset curation and analysis. To address these challenges, we release RedPajama-V1, an open reproduction of the LLaMA training dataset. In addition, we release RedPajama-V2, a massive web-only dataset consisting of raw, unfiltered text data together with quality signals and metadata. Together, the RedPajama datasets comprise over 100 trillion tokens spanning multiple domains and with their quality signals facilitate the filtering of data, aiming to inspire the development of numerous new datasets. To date, these datasets have already been used in the training of strong language models used in production, such as Snowflake Arctic, Salesforce's XGen and AI2's OLMo. To provide insight into the quality of RedPajama, we present a series of analyses and ablation studies with decoder-only language models with up to 1.6B parameters. Our findings demonstrate how quality signals for web data can be effectively leveraged to curate high-quality subsets of the dataset, underscoring the potential of RedPajama to advance the development of transparent and high-performing language models at scale.

CALM : A Multi-task Benchmark for Comprehensive Assessment of Language Model Bias

As language models (LMs) become increasingly powerful, it is important to quantify and compare them for sociodemographic bias with potential for harm. Prior bias measurement datasets are sensitive to perturbations in their manually designed templates, therefore unreliable. To achieve reliability, we introduce the Comprehensive Assessment of Language Model bias (CALM), a benchmark dataset to quantify bias in LMs across three tasks. We integrate 16 existing datasets across different domains, such as Wikipedia and news articles, to filter 224 templates from which we construct a dataset of 78,400 examples. We compare the diversity of CALM with prior datasets on metrics such as average semantic similarity, and variation in template length, and test the sensitivity to small perturbations. We show that our dataset is more diverse and reliable than previous datasets, thus better capture the breadth of linguistic variation required to reliably evaluate model bias. We evaluate 20 large language models including six prominent families of LMs such as Llama-2. In two LM series, OPT and Bloom, we found that larger parameter models are more biased than lower parameter models. We found the T0 series of models to be the least biased. Furthermore, we noticed a tradeoff between gender and racial bias with increasing model size in some model series. The code is available at https://github.com/vipulgupta1011/CALM.

Scalable Evaluation of Online Facilitation Strategies via Synthetic Simulation of Discussions

Limited large-scale evaluations exist for facilitation strategies of online discussions due to significant costs associated with human involvement. An effective solution is synthetic discussion simulations using Large Language Models (LLMs) to create initial pilot experiments. We propose a simple, generalizable, LLM-driven methodology to prototype the development of LLM facilitators, and produce high-quality synthetic data without human involvement. We use our methodology to test whether current facilitation strategies can improve the performance of LLM facilitators. We find that, while LLM facilitators significantly improve synthetic discussions, there is no evidence that the application of more elaborate facilitation strategies proposed in modern Social Science research lead to further improvements in discussion quality, compared to more basic approaches. Additionally, we find that small LLMs (such as Mistral Nemo 12B) can perform comparably to larger models (such as LLaMa 70B), and that special instructions must be used for instruction-tuned models to induce toxicity in synthetic discussions. We confirm that each component of our methodology contributes substantially to high quality data via an ablation study. We release an open-source framework, "SynDisco" (pip install syndisco), which implements our methodology. We also release the "Virtual Moderation Dataset" (https://paperswithcode.com/dataset/vmd), a large, publicly available dataset containing LLM-generated and LLM-annotated discussions using multiple open-source LLMs.

BeanCounter: A low-toxicity, large-scale, and open dataset of business-oriented text

Many of the recent breakthroughs in language modeling have resulted from scaling effectively the same model architecture to larger datasets. In this vein, recent work has highlighted performance gains from increasing training dataset size and quality, suggesting a need for novel sources of large-scale datasets. In this work, we introduce BeanCounter, a public dataset consisting of more than 159B tokens extracted from businesses' disclosures. We show that this data is indeed novel: less than 0.1% of BeanCounter appears in Common Crawl-based datasets and it is an order of magnitude larger than datasets relying on similar sources. Given the data's provenance, we hypothesize that BeanCounter is comparatively more factual and less toxic than web-based datasets. Exploring this hypothesis, we find that many demographic identities occur with similar prevalence in BeanCounter but with significantly less toxic context relative to other datasets. To demonstrate the utility of BeanCounter, we evaluate and compare two LLMs continually pre-trained on BeanCounter with their base models. We find an 18-33% reduction in toxic generation and improved performance within the finance domain for the continually pretrained models. Collectively, our work suggests that BeanCounter is a novel source of low-toxicity and high-quality domain-specific data with sufficient scale to train multi-billion parameter LLMs.

Valentine: Evaluating Matching Techniques for Dataset Discovery

Data scientists today search large data lakes to discover and integrate datasets. In order to bring together disparate data sources, dataset discovery methods rely on some form of schema matching: the process of establishing correspondences between datasets. Traditionally, schema matching has been used to find matching pairs of columns between a source and a target schema. However, the use of schema matching in dataset discovery methods differs from its original use. Nowadays schema matching serves as a building block for indicating and ranking inter-dataset relationships. Surprisingly, although a discovery method's success relies highly on the quality of the underlying matching algorithms, the latest discovery methods employ existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available datasets with ground truth, reference method implementations, and evaluation metrics. In this paper, we aim to rectify the problem of evaluating the effectiveness and efficiency of schema matching methods for the specific needs of dataset discovery. To this end, we propose Valentine, an extensible open-source experiment suite to execute and organize large-scale automated matching experiments on tabular data. Valentine includes implementations of seminal schema matching methods that we either implemented from scratch (due to absence of open source code) or imported from open repositories. The contributions of Valentine are: i) the definition of four schema matching scenarios as encountered in dataset discovery methods, ii) a principled dataset fabrication process tailored to the scope of dataset discovery methods and iii) the most comprehensive evaluation of schema matching techniques to date, offering insight on the strengths and weaknesses of existing techniques, that can serve as a guide for employing schema matching in future dataset discovery methods.

Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement

The rapid development of large language models (LLMs), like ChatGPT, has resulted in the widespread presence of LLM-generated content on social media platforms, raising concerns about misinformation, data biases, and privacy violations, which can undermine trust in online discourse. While detecting LLM-generated content is crucial for mitigating these risks, current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration. To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content. This approach introduces two novel tasks: LLM Role Recognition (LLM-RR), a multi-class classification task that identifies specific roles of LLM in content generation, and LLM Influence Measurement (LLM-IM), a regression task that quantifies the extent of LLM involvement in content creation. To support these tasks, we propose LLMDetect, a benchmark designed to evaluate detectors' performance on these new tasks. LLMDetect includes the Hybrid News Detection Corpus (HNDC) for training detectors, as well as DetectEval, a comprehensive evaluation suite that considers five distinct cross-context variations and two multi-intensity variations within the same LLM role. This allows for a thorough assessment of detectors' generalization and robustness across diverse contexts. Our empirical validation of 10 baseline detection methods demonstrates that fine-tuned PLM-based models consistently outperform others on both tasks, while advanced LLMs face challenges in accurately detecting their own generated content. Our experimental results and analysis offer insights for developing more effective detection models for LLM-generated content. This research enhances the understanding of LLM-generated content and establishes a foundation for more nuanced detection methodologies.

ScIRGen: Synthesize Realistic and Large-Scale RAG Dataset for Scientific Research

Scientific researchers need intensive information about datasets to effectively evaluate and develop theories and methodologies. The information needs regarding datasets are implicitly embedded in particular research tasks, rather than explicitly expressed in search queries. However, existing scientific retrieval and question-answering (QA) datasets typically address straightforward questions, which do not align with the distribution of real-world research inquiries. To bridge this gap, we developed ScIRGen, a dataset generation framework for scientific QA \& retrieval that more accurately reflects the information needs of professional science researchers, and uses it to create a large-scale scientific retrieval-augmented generation (RAG) dataset with realistic queries, datasets and papers. Technically, we designed a dataset-oriented information extraction method that leverages academic papers to augment the dataset representation. We then proposed a question generation framework by employing cognitive taxonomy to ensure the quality of synthesized questions. We also design a method to automatically filter synthetic answers based on the perplexity shift of LLMs, which is highly aligned with human judgment of answers' validity. Collectively, these methodologies culminated in the creation of the 61k QA dataset, ScIRGen-Geo. We benchmarked representative methods on the ScIRGen-Geo dataset for their question-answering and retrieval capabilities, finding out that current methods still suffer from reasoning from complex questions. This work advances the development of more sophisticated tools to support the intricate information needs of the scientific community.

SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain

Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.

TrialPanorama: Database and Benchmark for Systematic Review and Design of Clinical Trials

Developing artificial intelligence (AI) for vertical domains requires a solid data foundation for both training and evaluation. In this work, we introduce TrialPanorama, a large-scale, structured database comprising 1,657,476 clinical trial records aggregated from 15 global sources. The database captures key aspects of trial design and execution, including trial setups, interventions, conditions, biomarkers, and outcomes, and links them to standard biomedical ontologies such as DrugBank and MedDRA. This structured and ontology-grounded design enables TrialPanorama to serve as a unified, extensible resource for a wide range of clinical trial tasks, including trial planning, design, and summarization. To demonstrate its utility, we derive a suite of benchmark tasks directly from the TrialPanorama database. The benchmark spans eight tasks across two categories: three for systematic review (study search, study screening, and evidence summarization) and five for trial design (arm design, eligibility criteria, endpoint selection, sample size estimation, and trial completion assessment). The experiments using five state-of-the-art large language models (LLMs) show that while general-purpose LLMs exhibit some zero-shot capability, their performance is still inadequate for high-stakes clinical trial workflows. We release TrialPanorama database and the benchmark to facilitate further research on AI for clinical trials.

ScholarSearch: Benchmarking Scholar Searching Ability of LLMs

Large Language Models (LLMs)' search capabilities have garnered significant attention. Existing benchmarks, such as OpenAI's BrowseComp, primarily focus on general search scenarios and fail to adequately address the specific demands of academic search. These demands include deeper literature tracing and organization, professional support for academic databases, the ability to navigate long-tail academic knowledge, and ensuring academic rigor. Here, we proposed ScholarSearch, the first dataset specifically designed to evaluate the complex information retrieval capabilities of Large Language Models (LLMs) in academic research. ScholarSearch possesses the following key characteristics: Academic Practicality, where question content closely mirrors real academic learning and research environments, avoiding deliberately misleading models; High Difficulty, with answers that are challenging for single models (e.g., Grok DeepSearch or Gemini Deep Research) to provide directly, often requiring at least three deep searches to derive; Concise Evaluation, where limiting conditions ensure answers are as unique as possible, accompanied by clear sources and brief solution explanations, greatly facilitating subsequent audit and verification, surpassing the current lack of analyzed search datasets both domestically and internationally; and Broad Coverage, as the dataset spans at least 15 different academic disciplines. Through ScholarSearch, we expect to more precisely measure and promote the performance improvement of LLMs in complex academic information retrieval tasks. The data is available at: https://huggingface.co/datasets/PKU-DS-LAB/ScholarSearch

Salamandra Technical Report

This work introduces Salamandra, a suite of open-source decoder-only large language models available in three different sizes: 2, 7, and 40 billion parameters. The models were trained from scratch on highly multilingual data that comprises text in 35 European languages and code. Our carefully curated corpus is made exclusively from open-access data compiled from a wide variety of sources. Along with the base models, supplementary checkpoints that were fine-tuned on public-domain instruction data are also released for chat applications. Additionally, we also share our preliminary experiments on multimodality, which serve as proof-of-concept to showcase potential applications for the Salamandra family. Our extensive evaluations on multilingual benchmarks reveal that Salamandra has strong capabilities, achieving competitive performance when compared to similarly sized open-source models. We provide comprehensive evaluation results both on standard downstream tasks as well as key aspects related to bias and safety.With this technical report, we intend to promote open science by sharing all the details behind our design choices, data curation strategy and evaluation methodology. In addition to that, we deviate from the usual practice by making our training and evaluation scripts publicly accessible. We release all models under a permissive Apache 2.0 license in order to foster future research and facilitate commercial use, thereby contributing to the open-source ecosystem of large language models.

Conversations in Galician: a Large Language Model for an Underrepresented Language

The recent proliferation of Large Conversation Language Models has highlighted the economic significance of widespread access to this type of AI technologies in the current information age. Nevertheless, prevailing models have primarily been trained on corpora consisting of documents written in popular languages. The dearth of such cutting-edge tools for low-resource languages further exacerbates their underrepresentation in the current economic landscape, thereby impacting their native speakers. This paper introduces two novel resources designed to enhance Natural Language Processing (NLP) for the Galician language. We present a Galician adaptation of the Alpaca dataset, comprising 52,000 instructions and demonstrations. This dataset proves invaluable for enhancing language models by fine-tuning them to more accurately adhere to provided instructions. Additionally, as a demonstration of the dataset utility, we fine-tuned LLaMA-7B to comprehend and respond in Galician, a language not originally supported by the model, by following the Alpaca format. This work contributes to the research on multilingual models tailored for low-resource settings, a crucial endeavor in ensuring the inclusion of all linguistic communities in the development of Large Language Models. Another noteworthy aspect of this research is the exploration of how knowledge of a closely related language, in this case, Portuguese, can assist in generating coherent text when training resources are scarce. Both the Galician Alpaca dataset and Cabuxa-7B are publicly accessible on our Huggingface Hub, and we have made the source code available to facilitate replication of this experiment and encourage further advancements for underrepresented languages.

BLADE: Benchmarking Language Model Agents for Data-Driven Science

Data-driven scientific discovery requires the iterative integration of scientific domain knowledge, statistical expertise, and an understanding of data semantics to make nuanced analytical decisions, e.g., about which variables, transformations, and statistical models to consider. LM-based agents equipped with planning, memory, and code execution capabilities have the potential to support data-driven science. However, evaluating agents on such open-ended tasks is challenging due to multiple valid approaches, partially correct steps, and different ways to express the same decisions. To address these challenges, we present BLADE, a benchmark to automatically evaluate agents' multifaceted approaches to open-ended research questions. BLADE consists of 12 datasets and research questions drawn from existing scientific literature, with ground truth collected from independent analyses by expert data scientists and researchers. To automatically evaluate agent responses, we developed corresponding computational methods to match different representations of analyses to this ground truth. Though language models possess considerable world knowledge, our evaluation shows that they are often limited to basic analyses. However, agents capable of interacting with the underlying data demonstrate improved, but still non-optimal, diversity in their analytical decision making. Our work enables the evaluation of agents for data-driven science and provides researchers deeper insights into agents' analysis approaches.

Topo Goes Political: TDA-Based Controversy Detection in Imbalanced Reddit Political Data

The detection of controversial content in political discussions on the Internet is a critical challenge in maintaining healthy digital discourse. Unlike much of the existing literature that relies on synthetically balanced data, our work preserves the natural distribution of controversial and non-controversial posts. This real-world imbalance highlights a core challenge that needs to be addressed for practical deployment. Our study re-evaluates well-established methods for detecting controversial content. We curate our own dataset focusing on the Indian political context that preserves the natural distribution of controversial content, with only 12.9% of the posts in our dataset being controversial. This disparity reflects the true imbalance in real-world political discussions and highlights a critical limitation in the existing evaluation methods. Benchmarking on datasets that model data imbalance is vital for ensuring real-world applicability. Thus, in this work, (i) we release our dataset, with an emphasis on class imbalance, that focuses on the Indian political context, (ii) we evaluate existing methods from this domain on this dataset and demonstrate their limitations in the imbalanced setting, (iii) we introduce an intuitive metric to measure a model's robustness to class imbalance, (iv) we also incorporate ideas from the domain of Topological Data Analysis, specifically Persistent Homology, to curate features that provide richer representations of the data. Furthermore, we benchmark models trained with topological features against established baselines.

Not All Correct Answers Are Equal: Why Your Distillation Source Matters

Distillation has emerged as a practical and effective approach to enhance the reasoning capabilities of open-source language models. In this work, we conduct a large-scale empirical study on reasoning data distillation by collecting verified outputs from three state-of-the-art teacher models-AM-Thinking-v1, Qwen3-235B-A22B, and DeepSeek-R1-on a shared corpus of 1.89 million queries. We construct three parallel datasets and analyze their distributions, revealing that AM-Thinking-v1-distilled data exhibits greater token length diversity and lower perplexity. Student models trained on each dataset are evaluated on reasoning benchmarks including AIME2024, AIME2025, MATH500, and LiveCodeBench. The AM-based model consistently achieves the best performance (e.g., 84.3 on AIME2024, 72.2 on AIME2025, 98.4 on MATH500, and 65.9 on LiveCodeBench) and demonstrates adaptive output behavior-producing longer responses for harder tasks and shorter ones for simpler tasks. These findings highlight the value of high-quality, verified reasoning traces. We release the AM-Thinking-v1 and Qwen3-235B-A22B distilled datasets to support future research on open and high-performing reasoning-oriented language models. The datasets are publicly available on Hugging FaceDatasets are available on Hugging Face: \href{https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled{AM-Thinking-v1-Distilled}, https://huggingface.co/datasets/a-m-team/AM-Qwen3-Distilled{AM-Qwen3-Distilled}.}.

Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud

Specializing LLMs in various domain-specific tasks has emerged as a critical step towards achieving high performance. However, the construction and annotation of datasets in specific domains are always very costly. Apart from using superior and expensive closed-source LLM APIs to construct datasets, some open-source models have become strong enough to handle dataset construction in many scenarios. Thus, we present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning. These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs: instruction expansion, instruction refinement, and instruction-response pair expansion. To fulfill this goal, we first construct an automatic data collection system with seed datasets generated from both public repositories and our in-house datasets. This system leverages powerful LLMs to expand, refine and re-write the instructions and responses, incorporating quality assessment techniques. Following this, we introduce the training process of our models, which effectively distills task-solving and text synthesis abilities from teacher LLMs. Finally, we demonstrate how we integrate these functionalities into a machine learning platform to support low-cost LLM fine-tuning from both dataset preparation and training perspectives for users. Experiments and an application study prove the effectiveness of our approach.

VaxGuard: A Multi-Generator, Multi-Type, and Multi-Role Dataset for Detecting LLM-Generated Vaccine Misinformation

Recent advancements in Large Language Models (LLMs) have significantly improved text generation capabilities. However, they also present challenges, particularly in generating vaccine-related misinformation, which poses risks to public health. Despite research on human-authored misinformation, a notable gap remains in understanding how LLMs contribute to vaccine misinformation and how best to detect it. Existing benchmarks often overlook vaccine-specific misinformation and the diverse roles of misinformation spreaders. This paper introduces VaxGuard, a novel dataset designed to address these challenges. VaxGuard includes vaccine-related misinformation generated by multiple LLMs and provides a comprehensive framework for detecting misinformation across various roles. Our findings show that GPT-3.5 and GPT-4o consistently outperform other LLMs in detecting misinformation, especially when dealing with subtle or emotionally charged narratives. On the other hand, PHI3 and Mistral show lower performance, struggling with precision and recall in fear-driven contexts. Additionally, detection performance tends to decline as input text length increases, indicating the need for improved methods to handle larger content. These results highlight the importance of role-specific detection strategies and suggest that VaxGuard can serve as a key resource for improving the detection of LLM-generated vaccine misinformation.

The Data Provenance Initiative: A Large Scale Audit of Dataset Licensing & Attribution in AI

The race to train language models on vast, diverse, and inconsistently documented datasets has raised pressing concerns about the legal and ethical risks for practitioners. To remedy these practices threatening data transparency and understanding, we convene a multi-disciplinary effort between legal and machine learning experts to systematically audit and trace 1800+ text datasets. We develop tools and standards to trace the lineage of these datasets, from their source, creators, series of license conditions, properties, and subsequent use. Our landscape analysis highlights the sharp divides in composition and focus of commercially open vs closed datasets, with closed datasets monopolizing important categories: lower resource languages, more creative tasks, richer topic variety, newer and more synthetic training data. This points to a deepening divide in the types of data that are made available under different license conditions, and heightened implications for jurisdictional legal interpretations of copyright and fair use. We also observe frequent miscategorization of licenses on widely used dataset hosting sites, with license omission of 72%+ and error rates of 50%+. This points to a crisis in misattribution and informed use of the most popular datasets driving many recent breakthroughs. As a contribution to ongoing improvements in dataset transparency and responsible use, we release our entire audit, with an interactive UI, the Data Provenance Explorer, which allows practitioners to trace and filter on data provenance for the most popular open source finetuning data collections: www.dataprovenance.org.

Android in the Wild: A Large-Scale Dataset for Android Device Control

There is a growing interest in device-control systems that can interpret human natural language instructions and execute them on a digital device by directly controlling its user interface. We present a dataset for device-control research, Android in the Wild (AITW), which is orders of magnitude larger than current datasets. The dataset contains human demonstrations of device interactions, including the screens and actions, and corresponding natural language instructions. It consists of 715k episodes spanning 30k unique instructions, four versions of Android (v10-13),and eight device types (Pixel 2 XL to Pixel 6) with varying screen resolutions. It contains multi-step tasks that require semantic understanding of language and visual context. This dataset poses a new challenge: actions available through the user interface must be inferred from their visual appearance. And, instead of simple UI element-based actions, the action space consists of precise gestures (e.g., horizontal scrolls to operate carousel widgets). We organize our dataset to encourage robustness analysis of device-control systems, i.e., how well a system performs in the presence of new task descriptions, new applications, or new platform versions. We develop two agents and report performance across the dataset. The dataset is available at https://github.com/google-research/google-research/tree/master/android_in_the_wild.

IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages

Despite the considerable advancements in English LLMs, the progress in building comparable models for other languages has been hindered due to the scarcity of tailored resources. Our work aims to bridge this divide by introducing an expansive suite of resources specifically designed for the development of Indic LLMs, covering 22 languages, containing a total of 251B tokens and 74.8M instruction-response pairs. Recognizing the importance of both data quality and quantity, our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data. We build a clean, open-source pipeline for curating pre-training data from diverse sources, including websites, PDFs, and videos, incorporating best practices for crawling, cleaning, flagging, and deduplication. For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models to create conversations grounded in articles from Indian Wikipedia and Wikihow. Additionally, we address toxicity alignment by generating toxic prompts for multiple scenarios and then generate non-toxic responses by feeding these toxic prompts to an aligned LLaMa2 model. We hope that the datasets, tools, and resources released as a part of this work will not only propel the research and development of Indic LLMs but also establish an open-source blueprint for extending such efforts to other languages. The data and other artifacts created as part of this work are released with permissive licenses.

MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset

Misinformation is becoming increasingly prevalent on social media and in news articles. It has become so widespread that we require algorithmic assistance utilising machine learning to detect such content. Training these machine learning models require datasets of sufficient scale, diversity and quality. However, datasets in the field of automatic misinformation detection are predominantly monolingual, include a limited amount of modalities and are not of sufficient scale and quality. Addressing this, we develop a data collection and linking system (MuMiN-trawl), to build a public misinformation graph dataset (MuMiN), containing rich social media data (tweets, replies, users, images, articles, hashtags) spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade. The dataset is made available as a heterogeneous graph via a Python package (mumin). We provide baseline results for two node classification tasks related to the veracity of a claim involving social media, and demonstrate that these are challenging tasks, with the highest macro-average F1-score being 62.55% and 61.45% for the two tasks, respectively. The MuMiN ecosystem is available at https://mumin-dataset.github.io/, including the data, documentation, tutorials and leaderboards.

A Vietnamese Dataset for Evaluating Machine Reading Comprehension

Over 97 million people speak Vietnamese as their native language in the world. However, there are few research studies on machine reading comprehension (MRC) for Vietnamese, the task of understanding a text and answering questions related to it. Due to the lack of benchmark datasets for Vietnamese, we present the Vietnamese Question Answering Dataset (UIT-ViQuAD), a new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. In particular, we propose a new process of dataset creation for Vietnamese MRC. Our in-depth analyses illustrate that our dataset requires abilities beyond simple reasoning like word matching and demands single-sentence and multiple-sentence inferences. Besides, we conduct experiments on state-of-the-art MRC methods for English and Chinese as the first experimental models on UIT-ViQuAD. We also estimate human performance on the dataset and compare it to the experimental results of powerful machine learning models. As a result, the substantial differences between human performance and the best model performance on the dataset indicate that improvements can be made on UIT-ViQuAD in future research. Our dataset is freely available on our website to encourage the research community to overcome challenges in Vietnamese MRC.

CORE: A Few-Shot Company Relation Classification Dataset for Robust Domain Adaptation

We introduce CORE, a dataset for few-shot relation classification (RC) focused on company relations and business entities. CORE includes 4,708 instances of 12 relation types with corresponding textual evidence extracted from company Wikipedia pages. Company names and business entities pose a challenge for few-shot RC models due to the rich and diverse information associated with them. For example, a company name may represent the legal entity, products, people, or business divisions depending on the context. Therefore, deriving the relation type between entities is highly dependent on textual context. To evaluate the performance of state-of-the-art RC models on the CORE dataset, we conduct experiments in the few-shot domain adaptation setting. Our results reveal substantial performance gaps, confirming that models trained on different domains struggle to adapt to CORE. Interestingly, we find that models trained on CORE showcase improved out-of-domain performance, which highlights the importance of high-quality data for robust domain adaptation. Specifically, the information richness embedded in business entities allows models to focus on contextual nuances, reducing their reliance on superficial clues such as relation-specific verbs. In addition to the dataset, we provide relevant code snippets to facilitate reproducibility and encourage further research in the field.

Navigating Dataset Documentations in AI: A Large-Scale Analysis of Dataset Cards on Hugging Face

Advances in machine learning are closely tied to the creation of datasets. While data documentation is widely recognized as essential to the reliability, reproducibility, and transparency of ML, we lack a systematic empirical understanding of current dataset documentation practices. To shed light on this question, here we take Hugging Face -- one of the largest platforms for sharing and collaborating on ML models and datasets -- as a prominent case study. By analyzing all 7,433 dataset documentation on Hugging Face, our investigation provides an overview of the Hugging Face dataset ecosystem and insights into dataset documentation practices, yielding 5 main findings: (1) The dataset card completion rate shows marked heterogeneity correlated with dataset popularity. (2) A granular examination of each section within the dataset card reveals that the practitioners seem to prioritize Dataset Description and Dataset Structure sections, while the Considerations for Using the Data section receives the lowest proportion of content. (3) By analyzing the subsections within each section and utilizing topic modeling to identify key topics, we uncover what is discussed in each section, and underscore significant themes encompassing both technical and social impacts, as well as limitations within the Considerations for Using the Data section. (4) Our findings also highlight the need for improved accessibility and reproducibility of datasets in the Usage sections. (5) In addition, our human annotation evaluation emphasizes the pivotal role of comprehensive dataset content in shaping individuals' perceptions of a dataset card's overall quality. Overall, our study offers a unique perspective on analyzing dataset documentation through large-scale data science analysis and underlines the need for more thorough dataset documentation in machine learning research.

RoleEval: A Bilingual Role Evaluation Benchmark for Large Language Models

The rapid evolution of large language models (LLMs) necessitates effective benchmarks for evaluating their role knowledge, which is essential for establishing connections with the real world and providing more immersive interactions. This paper introduces RoleEval, a bilingual benchmark designed to assess the memorization, utilization, and reasoning capabilities of role knowledge. RoleEval comprises RoleEval-Global (including internationally recognized characters) and RoleEval-Chinese (including characters popular in China), with 6,000 Chinese-English parallel multiple-choice questions focusing on 300 influential people and fictional characters drawn from a variety of domains including celebrities, anime, comics, movies, TV series, games, and fiction. These questions cover basic knowledge and multi-hop reasoning abilities, aiming to systematically probe various aspects such as personal information, relationships, abilities, and experiences of the characters. To maintain high standards, we perform a hybrid quality check process combining automatic and human verification, ensuring that the questions are diverse, challenging, and discriminative. Our extensive evaluations of RoleEval across various open-source and proprietary large language models, under both the zero- and few-shot settings, reveal insightful findings. Notably, while GPT-4 outperforms other models on RoleEval-Global, Chinese LLMs excel on RoleEval-Chinese, highlighting significant knowledge distribution differences. We expect that RoleEval will highlight the significance of assessing role knowledge for foundation models across various languages and cultural settings.

Alloprof: a new French question-answer education dataset and its use in an information retrieval case study

Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting.

Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers

Tracking how data is mentioned and used in research papers provides critical insights for improving data discoverability, quality, and production. However, manually identifying and classifying dataset mentions across vast academic literature is resource-intensive and not scalable. This paper presents a machine learning framework that automates dataset mention detection across research domains by leveraging large language models (LLMs), synthetic data, and a two-stage fine-tuning process. We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset. The Phi-3.5-mini instruct model is pre-fine-tuned on this dataset, followed by fine-tuning on a manually annotated subset. At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall. Evaluated on a held-out manually annotated sample, our fine-tuned model outperforms NuExtract-v1.5 and GLiNER-large-v2.1 in dataset extraction accuracy. Our results highlight how LLM-generated synthetic data can effectively address training data scarcity, improving generalization in low-resource settings. This framework offers a pathway toward scalable monitoring of dataset usage, enhancing transparency, and supporting researchers, funders, and policymakers in identifying data gaps and strengthening data accessibility for informed decision-making.

DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery

The rapid advancement of large language models has fundamentally shifted the bottleneck in AI development from computational power to data availability-with countless valuable datasets remaining hidden across specialized repositories, research appendices, and domain platforms. As reasoning capabilities and deep research methodologies continue to evolve, a critical question emerges: can AI agents transcend conventional search to systematically discover any dataset that meets specific user requirements, enabling truly autonomous demand-driven data curation? We introduce DatasetResearch, the first comprehensive benchmark evaluating AI agents' ability to discover and synthesize datasets from 208 real-world demands across knowledge-intensive and reasoning-intensive tasks. Our tri-dimensional evaluation framework reveals a stark reality: even advanced deep research systems achieve only 22% score on our challenging DatasetResearch-pro subset, exposing the vast gap between current capabilities and perfect dataset discovery. Our analysis uncovers a fundamental dichotomy-search agents excel at knowledge tasks through retrieval breadth, while synthesis agents dominate reasoning challenges via structured generation-yet both catastrophically fail on "corner cases" outside existing distributions. These findings establish the first rigorous baseline for dataset discovery agents and illuminate the path toward AI systems capable of finding any dataset in the digital universe. Our benchmark and comprehensive analysis provide the foundation for the next generation of self-improving AI systems and are publicly available at https://github.com/GAIR-NLP/DatasetResearch.

DICES Dataset: Diversity in Conversational AI Evaluation for Safety

Machine learning approaches often require training and evaluation datasets with a clear separation between positive and negative examples. This risks simplifying and even obscuring the inherent subjectivity present in many tasks. Preserving such variance in content and diversity in datasets is often expensive and laborious. This is especially troubling when building safety datasets for conversational AI systems, as safety is both socially and culturally situated. To demonstrate this crucial aspect of conversational AI safety, and to facilitate in-depth model performance analyses, we introduce the DICES (Diversity In Conversational AI Evaluation for Safety) dataset that contains fine-grained demographic information about raters, high replication of ratings per item to ensure statistical power for analyses, and encodes rater votes as distributions across different demographics to allow for in-depth explorations of different aggregation strategies. In short, the DICES dataset enables the observation and measurement of variance, ambiguity, and diversity in the context of conversational AI safety. We also illustrate how the dataset offers a basis for establishing metrics to show how raters' ratings can intersects with demographic categories such as racial/ethnic groups, age groups, and genders. The goal of DICES is to be used as a shared resource and benchmark that respects diverse perspectives during safety evaluation of conversational AI systems.

ChemPile: A 250GB Diverse and Curated Dataset for Chemical Foundation Models

Foundation models have shown remarkable success across scientific domains, yet their impact in chemistry remains limited due to the absence of diverse, large-scale, high-quality datasets that reflect the field's multifaceted nature. We present the ChemPile, an open dataset containing over 75 billion tokens of curated chemical data, specifically built for training and evaluating general-purpose models in the chemical sciences. The dataset mirrors the human learning journey through chemistry -- from educational foundations to specialized expertise -- spanning multiple modalities and content types including structured data in diverse chemical representations (SMILES, SELFIES, IUPAC names, InChI, molecular renderings), scientific and educational text, executable code, and chemical images. ChemPile integrates foundational knowledge (textbooks, lecture notes), specialized expertise (scientific articles and language-interfaced data), visual understanding (molecular structures, diagrams), and advanced reasoning (problem-solving traces and code) -- mirroring how human chemists develop expertise through diverse learning materials and experiences. Constructed through hundreds of hours of expert curation, the ChemPile captures both foundational concepts and domain-specific complexity. We provide standardized training, validation, and test splits, enabling robust benchmarking. ChemPile is openly released via HuggingFace with a consistent API, permissive license, and detailed documentation. We hope the ChemPile will serve as a catalyst for chemical AI, enabling the development of the next generation of chemical foundation models.

AEGIS: Online Adaptive AI Content Safety Moderation with Ensemble of LLM Experts

As Large Language Models (LLMs) and generative AI become more widespread, the content safety risks associated with their use also increase. We find a notable deficiency in high-quality content safety datasets and benchmarks that comprehensively cover a wide range of critical safety areas. To address this, we define a broad content safety risk taxonomy, comprising 13 critical risk and 9 sparse risk categories. Additionally, we curate AEGISSAFETYDATASET, a new dataset of approximately 26, 000 human-LLM interaction instances, complete with human annotations adhering to the taxonomy. We plan to release this dataset to the community to further research and to help benchmark LLM models for safety. To demonstrate the effectiveness of the dataset, we instruction-tune multiple LLM-based safety models. We show that our models (named AEGISSAFETYEXPERTS), not only surpass or perform competitively with the state-of-the-art LLM-based safety models and general purpose LLMs, but also exhibit robustness across multiple jail-break attack categories. We also show how using AEGISSAFETYDATASET during the LLM alignment phase does not negatively impact the performance of the aligned models on MT Bench scores. Furthermore, we propose AEGIS, a novel application of a no-regret online adaptation framework with strong theoretical guarantees, to perform content moderation with an ensemble of LLM content safety experts in deployment

No Language Data Left Behind: A Comparative Study of CJK Language Datasets in the Hugging Face Ecosystem

Recent advances in Natural Language Processing (NLP) have underscored the crucial role of high-quality datasets in building large language models (LLMs). However, while extensive resources and analyses exist for English, the landscape for East Asian languages - particularly Chinese, Japanese, and Korean (CJK) - remains fragmented and underexplored, despite these languages together serving over 1.6 billion speakers. To address this gap, we investigate the HuggingFace ecosystem from a cross-linguistic perspective, focusing on how cultural norms, research environments, and institutional practices shape dataset availability and quality. Drawing on more than 3,300 datasets, we employ quantitative and qualitative methods to examine how these factors drive distinct creation and curation patterns across Chinese, Japanese, and Korean NLP communities. Our findings highlight the large-scale and often institution-driven nature of Chinese datasets, grassroots community-led development in Korean NLP, and an entertainment- and subculture-focused emphasis on Japanese collections. By uncovering these patterns, we reveal practical strategies for enhancing dataset documentation, licensing clarity, and cross-lingual resource sharing - ultimately guiding more effective and culturally attuned LLM development in East Asia. We conclude by discussing best practices for future dataset curation and collaboration, aiming to strengthen resource development across all three languages.

Revisiting Table Detection Datasets for Visually Rich Documents

Table Detection has become a fundamental task for visually rich document understanding with the surging number of electronic documents. However, popular public datasets widely used in related studies have inherent limitations, including noisy and inconsistent samples, limited training samples, and limited data sources. These limitations make these datasets unreliable to evaluate the model performance and cannot reflect the actual capacity of models. Therefore, this study revisits some open datasets with high-quality annotations, identifies and cleans the noise, and aligns the annotation definitions of these datasets to merge a larger dataset, termed Open-Tables. Moreover, to enrich the data sources, we propose a new ICT-TD dataset using the PDF files of Information and Communication Technologies (ICT) commodities, a different domain containing unique samples that hardly appear in open datasets. To ensure the label quality of the dataset, we annotated the dataset manually following the guidance of a domain expert. The proposed dataset is challenging and can be a sample of actual cases in the business context. We built strong baselines using various state-of-the-art object detection models. Our experimental results show that the domain differences among existing open datasets are minor despite having different data sources. Our proposed Open-Tables and ICT-TD can provide a more reliable evaluation for models because of their high quality and consistent annotations. Besides, they are more suitable for cross-domain settings. Our experimental results show that in the cross-domain setting, benchmark models trained with cleaned Open-Tables dataset can achieve 0.6\%-2.6\% higher weighted average F1 than the corresponding ones trained with the noisy version of Open-Tables, demonstrating the reliability of the proposed datasets. The datasets are public available.

MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream

A lot of research has been devoted to identity documents analysis and recognition on mobile devices. However, no publicly available datasets designed for this particular problem currently exist. There are a few datasets which are useful for associated subtasks but in order to facilitate a more comprehensive scientific and technical approach to identity document recognition more specialized datasets are required. In this paper we present a Mobile Identity Document Video dataset (MIDV-500) consisting of 500 video clips for 50 different identity document types with ground truth which allows to perform research in a wide scope of document analysis problems. The paper presents characteristics of the dataset and evaluation results for existing methods of face detection, text line recognition, and document fields data extraction. Since an important feature of identity documents is their sensitiveness as they contain personal data, all source document images used in MIDV-500 are either in public domain or distributed under public copyright licenses. The main goal of this paper is to present a dataset. However, in addition and as a baseline, we present evaluation results for existing methods for face detection, text line recognition, and document data extraction, using the presented dataset. (The dataset is available for download at ftp://smartengines.com/midv-500/.)

COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning

Recently, there have been significant advancements in large language models (LLMs), particularly focused on the English language. These advancements have enabled these LLMs to understand and execute complex instructions with unprecedented accuracy and fluency. However, despite these advancements, there remains a noticeable gap in the development of Chinese instruction tuning. The unique linguistic features and cultural depth of the Chinese language pose challenges for instruction tuning tasks. Existing datasets are either derived from English-centric LLMs or are ill-suited for aligning with the interaction patterns of real-world Chinese users. To bridge this gap, we introduce COIG-CQIA, a high-quality Chinese instruction tuning dataset. Our aim is to build a diverse, wide-ranging instruction-tuning dataset to better align model behavior with human interactions. To this end, we collect a high-quality human-written corpus from various sources on the Chinese Internet, including Q&A communities, Wikis, examinations, and existing NLP datasets. This corpus was rigorously filtered and carefully processed to form the COIG-CQIA dataset. Furthermore, we train models of various scales on different subsets of CQIA, following in-depth evaluation and analyses. The findings from our experiments offer valuable insights for selecting and developing Chinese instruction-tuning datasets. We also find that models trained on CQIA-Subset achieve competitive results in human assessment as well as knowledge and security benchmarks. Data are available at https://huggingface.co/datasets/m-a-p/COIG-CQIA

DRAGON: A Large-Scale Dataset of Realistic Images Generated by Diffusion Models

The remarkable ease of use of diffusion models for image generation has led to a proliferation of synthetic content online. While these models are often employed for legitimate purposes, they are also used to generate fake images that support misinformation and hate speech. Consequently, it is crucial to develop robust tools capable of detecting whether an image has been generated by such models. Many current detection methods, however, require large volumes of sample images for training. Unfortunately, due to the rapid evolution of the field, existing datasets often cover only a limited range of models and quickly become outdated. In this work, we introduce DRAGON, a comprehensive dataset comprising images from 25 diffusion models, spanning both recent advancements and older, well-established architectures. The dataset contains a broad variety of images representing diverse subjects. To enhance image realism, we propose a simple yet effective pipeline that leverages a large language model to expand input prompts, thereby generating more diverse and higher-quality outputs, as evidenced by improvements in standard quality metrics. The dataset is provided in multiple sizes (ranging from extra-small to extra-large) to accomodate different research scenarios. DRAGON is designed to support the forensic community in developing and evaluating detection and attribution techniques for synthetic content. Additionally, the dataset is accompanied by a dedicated test set, intended to serve as a benchmark for assessing the performance of newly developed methods.

Synthetic Data Generation with Large Language Models for Personalized Community Question Answering

Personalization in Information Retrieval (IR) is a topic studied by the research community since a long time. However, there is still a lack of datasets to conduct large-scale evaluations of personalized IR; this is mainly due to the fact that collecting and curating high-quality user-related information requires significant costs and time investment. Furthermore, the creation of datasets for Personalized IR (PIR) tasks is affected by both privacy concerns and the need for accurate user-related data, which are often not publicly available. Recently, researchers have started to explore the use of Large Language Models (LLMs) to generate synthetic datasets, which is a possible solution to generate data for low-resource tasks. In this paper, we investigate the potential of Large Language Models (LLMs) for generating synthetic documents to train an IR system for a Personalized Community Question Answering task. To study the effectiveness of IR models fine-tuned on LLM-generated data, we introduce a new dataset, named Sy-SE-PQA. We build Sy-SE-PQA based on an existing dataset, SE-PQA, which consists of questions and answers posted on the popular StackExchange communities. Starting from questions in SE-PQA, we generate synthetic answers using different prompt techniques and LLMs. Our findings suggest that LLMs have high potential in generating data tailored to users' needs. The synthetic data can replace human-written training data, even if the generated data may contain incorrect information.

FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset

The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.

Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development

Data is a crucial component of machine learning. The field is reliant on data to train, validate, and test models. With increased technical capabilities, machine learning research has boomed in both academic and industry settings, and one major focus has been on computer vision. Computer vision is a popular domain of machine learning increasingly pertinent to real-world applications, from facial recognition in policing to object detection for autonomous vehicles. Given computer vision's propensity to shape machine learning research and impact human life, we seek to understand disciplinary practices around dataset documentation - how data is collected, curated, annotated, and packaged into datasets for computer vision researchers and practitioners to use for model tuning and development. Specifically, we examine what dataset documentation communicates about the underlying values of vision data and the larger practices and goals of computer vision as a field. To conduct this study, we collected a corpus of about 500 computer vision datasets, from which we sampled 114 dataset publications across different vision tasks. Through both a structured and thematic content analysis, we document a number of values around accepted data practices, what makes desirable data, and the treatment of humans in the dataset construction process. We discuss how computer vision datasets authors value efficiency at the expense of care; universality at the expense of contextuality; impartiality at the expense of positionality; and model work at the expense of data work. Many of the silenced values we identify sit in opposition with social computing practices. We conclude with suggestions on how to better incorporate silenced values into the dataset creation and curation process.

When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data

Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles

Bridging the Data Provenance Gap Across Text, Speech and Video

Progress in AI is driven largely by the scale and quality of training data. Despite this, there is a deficit of empirical analysis examining the attributes of well-established datasets beyond text. In this work we conduct the largest and first-of-its-kind longitudinal audit across modalities--popular text, speech, and video datasets--from their detailed sourcing trends and use restrictions to their geographical and linguistic representation. Our manual analysis covers nearly 4000 public datasets between 1990-2024, spanning 608 languages, 798 sources, 659 organizations, and 67 countries. We find that multimodal machine learning applications have overwhelmingly turned to web-crawled, synthetic, and social media platforms, such as YouTube, for their training sets, eclipsing all other sources since 2019. Secondly, tracing the chain of dataset derivations we find that while less than 33% of datasets are restrictively licensed, over 80% of the source content in widely-used text, speech, and video datasets, carry non-commercial restrictions. Finally, counter to the rising number of languages and geographies represented in public AI training datasets, our audit demonstrates measures of relative geographical and multilingual representation have failed to significantly improve their coverage since 2013. We believe the breadth of our audit enables us to empirically examine trends in data sourcing, restrictions, and Western-centricity at an ecosystem-level, and that visibility into these questions are essential to progress in responsible AI. As a contribution to ongoing improvements in dataset transparency and responsible use, we release our entire multimodal audit, allowing practitioners to trace data provenance across text, speech, and video.

Evaluating and Mitigating Discrimination in Language Model Decisions

As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at https://huggingface.co/datasets/Anthropic/discrim-eval

The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation

This paper presents synthetic Preference Optimization (PO) datasets generated using multi-agent workflows and evaluates the effectiveness and potential of these workflows in the dataset generation process. PO dataset generation requires two modules: (1) response evaluation, and (2) response generation. In the response evaluation module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. In each step, we use inter-rater agreement using Cohen's Kappa between human annotators and LLMs. For the response generation module, we compare different configurations for the LLM Feedback Loop using the identified LLM evaluator configuration. We use the win rate (the fraction of times a generation framework is selected as the best by an LLM evaluator) to determine the best multi-agent configuration for generation. After identifying the best configurations for both modules, we use models from the GPT, Gemma, and Llama families to generate our PO datasets using the above pipeline. We generate two types of PO datasets, one to improve the generation capabilities of individual LLM and the other to improve the multi-agent workflow. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across datasets when the candidate responses do not include responses from the GPT family. Additionally, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-agent Llama and Gemma, respectively.

A Labelled Dataset for Sentiment Analysis of Videos on YouTube, TikTok, and Other Sources about the 2024 Outbreak of Measles

The work of this paper presents a dataset that contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. The dataset is available at https://dx.doi.org/10.21227/40s8-xf63. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. Finally, this paper also presents a list of open research questions that may be investigated using this dataset.

INDUS: Effective and Efficient Language Models for Scientific Applications

Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this pivotal insight, we developed INDUS, a comprehensive suite of LLMs tailored for the Earth science, biology, physics, heliophysics, planetary sciences and astrophysics domains and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address natural language understanding tasks, (2) a contrastive-learning-based general text embedding model trained using a diverse set of datasets drawn from multiple sources to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation techniques to address applications which have latency or resource constraints. We also created three new scientific benchmark datasets namely, CLIMATE-CHANGE-NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. Finally, we show that our models outperform both general-purpose encoders (RoBERTa) and existing domain-specific encoders (SciBERT) on these new tasks as well as existing benchmark tasks in the domains of interest.

Toxicity of the Commons: Curating Open-Source Pre-Training Data

Open-source large language models are becoming increasingly available and popular among researchers and practitioners. While significant progress has been made on open-weight models, open training data is a practice yet to be adopted by the leading open-weight models creators. At the same time, there researchers are working to make language models safer. We propose a data curation pipeline to reduce harmful outputs by models trained on public domain data. There are unique challenges to working with public domain data, as these sources differ from web text in both form and content. Many sources are historical documents and are the result of Optical Character Recognition (OCR). Consequently, current state-of-the-art approaches to toxicity filtering are often infeasible or inappropriate for open data models. In this paper, we introduce a new fully open-source pipeline for open-data toxicity filtering. Our contributions are threefold. We create a custom training dataset, ToxicCommons, which is composed of texts which have been classified across five different dimensions (racial/origin-based, gender/sex-based, religious, ability-based discrimination, and violence). We use this dataset to train a custom classifier, Celadon, that can be used to detect toxic content in open data more efficiently at a larger scale. Finally, we describe the balanced approach to content filtration that optimizes safety filtering with respect to the filtered data available for training.

FSD50K: An Open Dataset of Human-Labeled Sound Events

Most existing datasets for sound event recognition (SER) are relatively small and/or domain-specific, with the exception of AudioSet, based on over 2M tracks from YouTube videos and encompassing over 500 sound classes. However, AudioSet is not an open dataset as its official release consists of pre-computed audio features. Downloading the original audio tracks can be problematic due to YouTube videos gradually disappearing and usage rights issues. To provide an alternative benchmark dataset and thus foster SER research, we introduce FSD50K, an open dataset containing over 51k audio clips totalling over 100h of audio manually labeled using 200 classes drawn from the AudioSet Ontology. The audio clips are licensed under Creative Commons licenses, making the dataset freely distributable (including waveforms). We provide a detailed description of the FSD50K creation process, tailored to the particularities of Freesound data, including challenges encountered and solutions adopted. We include a comprehensive dataset characterization along with discussion of limitations and key factors to allow its audio-informed usage. Finally, we conduct sound event classification experiments to provide baseline systems as well as insight on the main factors to consider when splitting Freesound audio data for SER. Our goal is to develop a dataset to be widely adopted by the community as a new open benchmark for SER research.

EdNet: A Large-Scale Hierarchical Dataset in Education

With advances in Artificial Intelligence in Education (AIEd) and the ever-growing scale of Interactive Educational Systems (IESs), data-driven approach has become a common recipe for various tasks such as knowledge tracing and learning path recommendation. Unfortunately, collecting real students' interaction data is often challenging, which results in the lack of public large-scale benchmark dataset reflecting a wide variety of student behaviors in modern IESs. Although several datasets, such as ASSISTments, Junyi Academy, Synthetic and STATICS, are publicly available and widely used, they are not large enough to leverage the full potential of state-of-the-art data-driven models and limits the recorded behaviors to question-solving activities. To this end, we introduce EdNet, a large-scale hierarchical dataset of diverse student activities collected by Santa, a multi-platform self-study solution equipped with artificial intelligence tutoring system. EdNet contains 131,441,538 interactions from 784,309 students collected over more than 2 years, which is the largest among the ITS datasets released to the public so far. Unlike existing datasets, EdNet provides a wide variety of student actions ranging from question-solving to lecture consumption and item purchasing. Also, EdNet has a hierarchical structure where the student actions are divided into 4 different levels of abstractions. The features of EdNet are domain-agnostic, allowing EdNet to be extended to different domains easily. The dataset is publicly released under Creative Commons Attribution-NonCommercial 4.0 International license for research purposes. We plan to host challenges in multiple AIEd tasks with EdNet to provide a common ground for the fair comparison between different state of the art models and encourage the development of practical and effective methods.

Rapid Biomedical Research Classification: The Pandemic PACT Advanced Categorisation Engine

This paper introduces the Pandemic PACT Advanced Categorisation Engine (PPACE) along with its associated dataset. PPACE is a fine-tuned model developed to automatically classify research abstracts from funded biomedical projects according to WHO-aligned research priorities. This task is crucial for monitoring research trends and identifying gaps in global health preparedness and response. Our approach builds on human-annotated projects, which are allocated one or more categories from a predefined list. A large language model is then used to generate `rationales' explaining the reasoning behind these annotations. This augmented data, comprising expert annotations and rationales, is subsequently used to fine-tune a smaller, more efficient model. Developed as part of the Pandemic PACT project, which aims to track and analyse research funding and clinical evidence for a wide range of diseases with outbreak potential, PPACE supports informed decision-making by research funders, policymakers, and independent researchers. We introduce and release both the trained model and the instruction-based dataset used for its training. Our evaluation shows that PPACE significantly outperforms its baselines. The release of PPACE and its associated dataset offers valuable resources for researchers in multilabel biomedical document classification and supports advancements in aligning biomedical research with key global health priorities.

Benchmarking LLMs for Political Science: A United Nations Perspective

Large Language Models (LLMs) have achieved significant advances in natural language processing, yet their potential for high-stake political decision-making remains largely unexplored. This paper addresses the gap by focusing on the application of LLMs to the United Nations (UN) decision-making process, where the stakes are particularly high and political decisions can have far-reaching consequences. We introduce a novel dataset comprising publicly available UN Security Council (UNSC) records from 1994 to 2024, including draft resolutions, voting records, and diplomatic speeches. Using this dataset, we propose the United Nations Benchmark (UNBench), the first comprehensive benchmark designed to evaluate LLMs across four interconnected political science tasks: co-penholder judgment, representative voting simulation, draft adoption prediction, and representative statement generation. These tasks span the three stages of the UN decision-making process--drafting, voting, and discussing--and aim to assess LLMs' ability to understand and simulate political dynamics. Our experimental analysis demonstrates the potential and challenges of applying LLMs in this domain, providing insights into their strengths and limitations in political science. This work contributes to the growing intersection of AI and political science, opening new avenues for research and practical applications in global governance. The UNBench Repository can be accessed at: https://github.com/yueqingliang1/UNBench.

A 106K Multi-Topic Multilingual Conversational User Dataset with Emoticons

Instant messaging has become a predominant form of communication, with texts and emoticons enabling users to express emotions and ideas efficiently. Emoticons, in particular, have gained significant traction as a medium for conveying sentiments and information, leading to the growing importance of emoticon retrieval and recommendation systems. However, one of the key challenges in this area has been the absence of datasets that capture both the temporal dynamics and user-specific interactions with emoticons, limiting the progress of personalized user modeling and recommendation approaches. To address this, we introduce the emoticon dataset, a comprehensive resource that includes time-based data along with anonymous user identifiers across different conversations. As the largest publicly accessible emoticon dataset to date, it comprises 22K unique users, 370K emoticons, and 8.3M messages. The data was collected from a widely-used messaging platform across 67 conversations and 720 hours of crawling. Strict privacy and safety checks were applied to ensure the integrity of both text and image data. Spanning across 10 distinct domains, the emoticon dataset provides rich insights into temporal, multilingual, and cross-domain behaviors, which were previously unavailable in other emoticon-based datasets. Our in-depth experiments, both quantitative and qualitative, demonstrate the dataset's potential in modeling user behavior and personalized recommendation systems, opening up new possibilities for research in personalized retrieval and conversational AI. The dataset is freely accessible.

Aegis2.0: A Diverse AI Safety Dataset and Risks Taxonomy for Alignment of LLM Guardrails

As Large Language Models (LLMs) and generative AI become increasingly widespread, concerns about content safety have grown in parallel. Currently, there is a clear lack of high-quality, human-annotated datasets that address the full spectrum of LLM-related safety risks and are usable for commercial applications. To bridge this gap, we propose a comprehensive and adaptable taxonomy for categorizing safety risks, structured into 12 top-level hazard categories with an extension to 9 fine-grained subcategories. This taxonomy is designed to meet the diverse requirements of downstream users, offering more granular and flexible tools for managing various risk types. Using a hybrid data generation pipeline that combines human annotations with a multi-LLM "jury" system to assess the safety of responses, we obtain Aegis 2.0, a carefully curated collection of 34,248 samples of human-LLM interactions, annotated according to our proposed taxonomy. To validate its effectiveness, we demonstrate that several lightweight models, trained using parameter-efficient techniques on Aegis 2.0, achieve performance competitive with leading safety models fully fine-tuned on much larger, non-commercial datasets. In addition, we introduce a novel training blend that combines safety with topic following data.This approach enhances the adaptability of guard models, enabling them to generalize to new risk categories defined during inference. We plan to open-source Aegis 2.0 data and models to the research community to aid in the safety guardrailing of LLMs.

SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects

Despite the progress we have recorded in the last few years in multilingual natural language processing, evaluation is typically limited to a small set of languages with available datasets which excludes a large number of low-resource languages. In this paper, we created SIB-200 -- a large-scale open-sourced benchmark dataset for topic classification in 200 languages and dialects to address the lack of evaluation dataset for Natural Language Understanding (NLU). For many of the languages covered in SIB-200, this is the first publicly available evaluation dataset for NLU. The dataset is based on Flores-200 machine translation corpus. We annotated the English portion of the dataset and extended the sentence-level annotation to the remaining 203 languages covered in the corpus. Despite the simplicity of this task, our evaluation in full-supervised setting, cross-lingual transfer setting and prompting of large language model setting show that there is still a large gap between the performance of high-resource and low-resource languages when multilingual evaluation is scaled to numerous world languages. We found that languages unseen during the pre-training of multilingual language models, under-represented language families (like Nilotic and Altantic-Congo), and languages from the regions of Africa, Americas, Oceania and South East Asia, often have the lowest performance on our topic classification dataset. We hope our dataset will encourage a more inclusive evaluation of multilingual language models on a more diverse set of languages. https://github.com/dadelani/sib-200

MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning

Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. However, the open-source community has primarily focused on mathematics and coding while neglecting the scientific domain, largely due to the absence of open, large-scale, high-quality, verifiable scientific reasoning datasets. To bridge this gap, we first present TextbookReasoning, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. We further introduce MegaScience, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies that evaluate various data selection methodologies to identify the optimal subset for each publicly available scientific dataset. Meanwhile, we build a comprehensive evaluation system covering diverse subjects and question types across 15 benchmarks, incorporating comprehensive answer extraction strategies to ensure accurate evaluation metrics. Our experiments demonstrate that our datasets achieve superior performance and training efficiency with more concise response lengths compared to existing open-source scientific datasets. Furthermore, we train Llama3.1, Qwen2.5, and Qwen3 series base models on MegaScience, which significantly outperform the corresponding official instruct models in average performance. In addition, MegaScience exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning. We release our data curation pipeline, evaluation system, datasets, and seven trained models to the community to advance scientific reasoning research.

CAISE: Conversational Agent for Image Search and Editing

Demand for image editing has been increasing as users' desire for expression is also increasing. However, for most users, image editing tools are not easy to use since the tools require certain expertise in photo effects and have complex interfaces. Hence, users might need someone to help edit their images, but having a personal dedicated human assistant for every user is impossible to scale. For that reason, an automated assistant system for image editing is desirable. Additionally, users want more image sources for diverse image editing works, and integrating an image search functionality into the editing tool is a potential remedy for this demand. Thus, we propose a dataset of an automated Conversational Agent for Image Search and Editing (CAISE). To our knowledge, this is the first dataset that provides conversational image search and editing annotations, where the agent holds a grounded conversation with users and helps them to search and edit images according to their requests. To build such a system, we first collect image search and editing conversations between pairs of annotators. The assistant-annotators are equipped with a customized image search and editing tool to address the requests from the user-annotators. The functions that the assistant-annotators conduct with the tool are recorded as executable commands, allowing the trained system to be useful for real-world application execution. We also introduce a generator-extractor baseline model for this task, which can adaptively select the source of the next token (i.e., from the vocabulary or from textual/visual contexts) for the executable command. This serves as a strong starting point while still leaving a large human-machine performance gap for useful future work. Our code and dataset are publicly available at: https://github.com/hyounghk/CAISE

ROBBIE: Robust Bias Evaluation of Large Generative Language Models

As generative large language models (LLMs) grow more performant and prevalent, we must develop comprehensive enough tools to measure and improve their fairness. Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes, meaning that testing LLMs on more datasets can potentially help us characterize their biases more fully, and better ensure equal and equitable treatment of marginalized demographic groups. In this work, our focus is two-fold: (1) Benchmarking: a comparison of 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs. Out of those 6 metrics, AdvPromptSet and HolisticBiasR are novel datasets proposed in the paper. The comparison of those benchmarks gives us insights about the bias and toxicity of the compared models. Therefore, we explore the frequency of demographic terms in common LLM pre-training corpora and how this may relate to model biases. (2) Mitigation: we conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements. ROBBIE aims to provide insights for practitioners while deploying a model, emphasizing the need to not only measure potential harms, but also understand how they arise by characterizing the data, mitigate harms once found, and balance any trade-offs. We open-source our analysis code in hopes of encouraging broader measurements of bias in future LLMs.