new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jun 6

FSM: A Finite State Machine Based Zero-Shot Prompting Paradigm for Multi-Hop Question Answering

Large Language Models (LLMs) with chain-of-thought (COT) prompting have demonstrated impressive abilities on simple nature language inference tasks. However, they tend to perform poorly on Multi-hop Question Answering (MHQA) tasks due to several challenges, including hallucination, error propagation and limited context length. We propose a prompting method, Finite State Machine (FSM) to enhance the reasoning capabilities of LLM for complex tasks in addition to improved effectiveness and trustworthiness. Different from COT methods, FSM addresses MHQA by iteratively decomposing a question into multi-turn sub-questions, and self-correcting in time, improving the accuracy of answers in each step. Specifically, FSM addresses one sub-question at a time and decides on the next step based on its current result and state, in an automaton-like format. Experiments on benchmarks show the effectiveness of our method. Although our method performs on par with the baseline on relatively simpler datasets, it excels on challenging datasets like Musique. Moreover, this approach mitigates the hallucination phenomenon, wherein the correct final answer can be recovered despite errors in intermediate reasoning. Furthermore, our method improves LLMs' ability to follow specified output format requirements, significantly reducing the difficulty of answer interpretation and the need for reformatting.

SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning

Optimizing Register Transfer Level (RTL) code is crucial for improving the power, performance, and area (PPA) of digital circuits in the early stages of synthesis. Manual rewriting, guided by synthesis feedback, can yield high-quality results but is time-consuming and error-prone. Most existing compiler-based approaches have difficulty handling complex design constraints. Large Language Model (LLM)-based methods have emerged as a promising alternative to address these challenges. However, LLM-based approaches often face difficulties in ensuring alignment between the generated code and the provided prompts. This paper presents SymRTLO, a novel neuron-symbolic RTL optimization framework that seamlessly integrates LLM-based code rewriting with symbolic reasoning techniques. Our method incorporates a retrieval-augmented generation (RAG) system of optimization rules and Abstract Syntax Tree (AST)-based templates, enabling LLM-based rewriting that maintains syntactic correctness while minimizing undesired circuit behaviors. A symbolic module is proposed for analyzing and optimizing finite state machine (FSM) logic, allowing fine-grained state merging and partial specification handling beyond the scope of pattern-based compilers. Furthermore, a fast verification pipeline, combining formal equivalence checks with test-driven validation, further reduces the complexity of verification. Experiments on the RTL-Rewriter benchmark with Synopsys Design Compiler and Yosys show that SymRTLO improves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%, respectively, compared to the state-of-the-art methods.

Codebook Features: Sparse and Discrete Interpretability for Neural Networks

Understanding neural networks is challenging in part because of the dense, continuous nature of their hidden states. We explore whether we can train neural networks to have hidden states that are sparse, discrete, and more interpretable by quantizing their continuous features into what we call codebook features. Codebook features are produced by finetuning neural networks with vector quantization bottlenecks at each layer, producing a network whose hidden features are the sum of a small number of discrete vector codes chosen from a larger codebook. Surprisingly, we find that neural networks can operate under this extreme bottleneck with only modest degradation in performance. This sparse, discrete bottleneck also provides an intuitive way of controlling neural network behavior: first, find codes that activate when the desired behavior is present, then activate those same codes during generation to elicit that behavior. We validate our approach by training codebook Transformers on several different datasets. First, we explore a finite state machine dataset with far more hidden states than neurons. In this setting, our approach overcomes the superposition problem by assigning states to distinct codes, and we find that we can make the neural network behave as if it is in a different state by activating the code for that state. Second, we train Transformer language models with up to 410M parameters on two natural language datasets. We identify codes in these models representing diverse, disentangled concepts (ranging from negative emotions to months of the year) and find that we can guide the model to generate different topics by activating the appropriate codes during inference. Overall, codebook features appear to be a promising unit of analysis and control for neural networks and interpretability. Our codebase and models are open-sourced at https://github.com/taufeeque9/codebook-features.

The Expressive Power of Transformers with Chain of Thought

Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming a slight generalization to standard pre-norm, adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems -- the first exact characterization of a type of transformers in terms of standard complexity classes. Together, our results provide a nuanced framework for understanding how the length of a transformer's chain of thought or scratchpad impacts its reasoning power.

AEGIS: An Agent-based Framework for General Bug Reproduction from Issue Descriptions

In software maintenance, bug reproduction is essential for effective fault localization and repair. Manually writing reproduction scripts is a time-consuming task with high requirements for developers. Hence, automation of bug reproduction has increasingly attracted attention from researchers and practitioners. However, the existing studies on bug reproduction are generally limited to specific bug types such as program crashes, and hard to be applied to general bug reproduction. In this paper, considering the superior performance of agent-based methods in code intelligence tasks, we focus on designing an agent-based framework for the task. Directly employing agents would lead to limited bug reproduction performance, due to entangled subtasks, lengthy retrieved context, and unregulated actions. To mitigate the challenges, we propose an Automated gEneral buG reproductIon Scripts generation framework, named AEGIS, which is the first agent-based framework for the task. AEGIS mainly contains two modules: (1) A concise context construction module, which aims to guide the code agent in extracting structured information from issue descriptions, identifying issue-related code with detailed explanations, and integrating these elements to construct the concise context; (2) A FSM-based multi-feedback optimization module to further regulate the behavior of the code agent within the finite state machine (FSM), ensuring a controlled and efficient script generation process based on multi-dimensional feedback. Extensive experiments on the public benchmark dataset show that AEGIS outperforms the state-of-the-art baseline by 23.0% in F->P metric. In addition, the bug reproduction scripts generated by AEGIS can improve the relative resolved rate of Agentless by 12.5%.

Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models

State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input x, combined with a per-state-group quantization for input-dependent parameters B and C. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms several state-of-the-art SSM quantization methods and delivers 1.3times and 3times speed-ups in the pre-filling and generation stages, respectively, while offering 4times memory reduction with only a 1.6% average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.

Turing Machine Evaluation for Large Language Model

With the rapid development and widespread application of Large Language Models (LLMs), rigorous evaluation has become particularly crucial. This research adopts a novel perspective, focusing on evaluating the core computational reasoning ability of LLMs, defined as the capacity of model to accurately understand rules, and execute logically computing operations. This capability assesses the reliability of LLMs as precise executors, and is critical to advanced tasks such as complex code generation and multi-step problem-solving. We propose an evaluation framework based on Universal Turing Machine (UTM) simulation. This framework requires LLMs to strictly follow instructions and track dynamic states, such as tape content and read/write head position, during multi-step computations. To enable standardized evaluation, we developed TMBench, a benchmark for systematically studying the computational reasoning capabilities of LLMs. TMBench provides several key advantages, including knowledge-agnostic evaluation, adjustable difficulty, foundational coverage through Turing machine encoding, and unlimited capacity for instance generation, ensuring scalability as models continue to evolve. We find that model performance on TMBench correlates strongly with performance on other recognized reasoning benchmarks (Pearson correlation coefficient is 0.73), clearly demonstrating that computational reasoning is a significant dimension for measuring the deep capabilities of LLMs. Code and data are available at https://github.com/HaitaoWuTJU/Turing-Machine-Bench.

STree: Speculative Tree Decoding for Hybrid State-Space Models

Speculative decoding is a technique to leverage hardware concurrency to improve the efficiency of large-scale autoregressive (AR) Transformer models by enabling multiple steps of token generation in a single forward pass. State-space models (SSMs) are already more efficient than AR Transformers, since their state summarizes all past data with no need to cache or re-process tokens in the sliding window context. However, their state can also comprise thousands of tokens; so, speculative decoding has recently been extended to SSMs. Existing approaches, however, do not leverage the tree-based verification methods, since current SSMs lack the means to compute a token tree efficiently. We propose the first scalable algorithm to perform tree-based speculative decoding in state-space models (SSMs) and hybrid architectures of SSMs and Transformer layers. We exploit the structure of accumulated state transition matrices to facilitate tree-based speculative decoding with minimal overhead to current SSM state update implementations. With the algorithm, we describe a hardware-aware implementation that improves naive application of AR Transformer tree-based speculative decoding methods to SSMs. Furthermore, we outperform vanilla speculative decoding with SSMs even with a baseline drafting model and tree structure on three different benchmarks, opening up opportunities for further speed up with SSM and hybrid model inference. Code will be released upon paper acceptance.

Insights from Verification: Training a Verilog Generation LLM with Reinforcement Learning with Testbench Feedback

Large language models (LLMs) have shown strong performance in Verilog generation from natural language description. However, ensuring the functional correctness of the generated code remains a significant challenge. This paper introduces a method that integrates verification insights from testbench into the training of Verilog generation LLMs, aligning the training with the fundamental goal of hardware design: functional correctness. The main obstacle in using LLMs for Verilog code generation is the lack of sufficient functional verification data, particularly testbenches paired with design specifications and code. To address this problem, we introduce an automatic testbench generation pipeline that decomposes the process and uses feedback from the Verilog compiler simulator (VCS) to reduce hallucination and ensure correctness. We then use the testbench to evaluate the generated codes and collect them for further training, where verification insights are introduced. Our method applies reinforcement learning (RL), specifically direct preference optimization (DPO), to align Verilog code generation with functional correctness by training preference pairs based on testbench outcomes. In evaluations on VerilogEval-Machine, VerilogEval-Human, RTLLM v1.1, RTLLM v2, and VerilogEval v2, our approach consistently outperforms state-of-the-art baselines in generating functionally correct Verilog code. We open source all training code, data, and models at https://anonymous.4open.science/r/VeriPrefer-E88B.

How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections

Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task.

ComplexVCoder: An LLM-Driven Framework for Systematic Generation of Complex Verilog Code

Recent advances have demonstrated the promising capabilities of large language models (LLMs) in generating register-transfer level (RTL) code, such as Verilog. However, existing LLM-based frameworks still face significant challenges in accurately handling the complexity of real-world RTL designs, particularly those that are large-scale and involve multi-level module instantiations. To address this issue, we present ComplexVCoder, an open-source LLM-driven framework that enhances both the generation quality and efficiency of complex Verilog code. Specifically, we introduce a two-stage generation mechanism, which leverages an intermediate representation to enable a more accurate and structured transition from natural language descriptions to intricate Verilog designs. In addition, we introduce a rule-based alignment method and a domain-specific retrieval-augmented generation (RAG) to further improve the correctness of the synthesized code by incorporating relevant design knowledge during generation. To evaluate our approach, we construct a comprehensive dataset comprising 55 complex Verilog designs derived from real-world implementations. We also release an open-source benchmark suite for systematically assessing the quality of auto-generated RTL code together with the ComplexVCoder framework. Experimental results show that ComplexVCoder outperforms SOTA frameworks such as CodeV and RTLCoder by 14.6% and 22.2%, respectively, in terms of function correctness on complex Verilog benchmarks. Furthermore, ComplexVcoder achieves comparable generation performances in terms of functionality correctness using a lightweight 32B model (Qwen2.5), rivaling larger-scale models such as GPT-3.5 and DeepSeek-V3.

Qiskit Code Assistant: Training LLMs for generating Quantum Computing Code

Code Large Language Models (Code LLMs) have emerged as powerful tools, revolutionizing the software development landscape by automating the coding process and reducing time and effort required to build applications. This paper focuses on training Code LLMs to specialize in the field of quantum computing. We begin by discussing the unique needs of quantum computing programming, which differ significantly from classical programming approaches or languages. A Code LLM specializing in quantum computing requires a foundational understanding of quantum computing and quantum information theory. However, the scarcity of available quantum code examples and the rapidly evolving field, which necessitates continuous dataset updates, present significant challenges. Moreover, we discuss our work on training Code LLMs to produce high-quality quantum code using the Qiskit library. This work includes an examination of the various aspects of the LLMs used for training and the specific training conditions, as well as the results obtained with our current models. To evaluate our models, we have developed a custom benchmark, similar to HumanEval, which includes a set of tests specifically designed for the field of quantum computing programming using Qiskit. Our findings indicate that our model outperforms existing state-of-the-art models in quantum computing tasks. We also provide examples of code suggestions, comparing our model to other relevant code LLMs. Finally, we introduce a discussion on the potential benefits of Code LLMs for quantum computing computational scientists, researchers, and practitioners. We also explore various features and future work that could be relevant in this context.

KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution

Large Language Models (LLMs) are consistently improving at increasingly realistic software engineering (SE) tasks. In real-world software stacks, significant SE effort is spent developing foundational system software like the Linux kernel. Unlike application-level software, a systems codebase like Linux is multilingual (low-level C/Assembly/Bash/Rust); gigantic (>20 million lines); critical (impacting billions of devices worldwide), and highly concurrent (involving complex multi-threading). To evaluate if ML models are useful while developing such large-scale systems-level software, we introduce kGym (a platform) and kBench (a dataset). The kGym platform provides a SE environment for large-scale experiments on the Linux kernel, including compiling and running kernels in parallel across several virtual machines, detecting operations and crashes, inspecting logs, and querying and patching the code base. We use kGym to facilitate evaluation on kBench, a crash resolution benchmark drawn from real-world Linux kernel bugs. An example bug in kBench contains crashing stack traces, a bug-reproducer file, a developer-written fix, and other associated data. To understand current performance, we conduct baseline experiments by prompting LLMs to resolve Linux kernel crashes. Our initial evaluations reveal that the best performing LLM achieves 0.72% and 5.38% in the unassisted and assisted (i.e., buggy files disclosed to the model) settings, respectively. These results highlight the need for further research to enhance model performance in SE tasks. Improving performance on kBench requires models to master new learning skills, including understanding the cause of crashes and repairing faults, writing memory-safe and hardware-aware code, and understanding concurrency. As a result, this work opens up multiple avenues of research at the intersection of machine learning and systems software.

Code Security Vulnerability Repair Using Reinforcement Learning with Large Language Models

With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.

Experiments with Large Language Models on Retrieval-Augmented Generation for Closed-Source Simulation Software

Large Language Models (LLMs) are increasingly helpful in text generation, even writing code in programming languages based on user prompts written in natural language. They are even applied to generate simulation models for multibody systems from natural language. Research results suggest that LLMs surpass the mere replication of existing code examples, where some LLMs have been trained on an open-source multibody simulation code. However, for closed-source simulation software, such results are not to be expected as their ideas and concepts might differ from other publicly available ones. LLMs can hallucinate for knowledge-intensive tasks, such as model creation, which can lead to wrong responses. This is especially the case for the LLM unknown closed-source simulation software. The same applies to other internal knowledge kept private to protect intellectual property or data privacy. The Retrieval-Augmented Generation (RAG) approach might yield a solution for these knowledge-intensive tasks. This paper explores the application of RAG to closed-source simulation software and presents first experiments. After a brief introduction to LLMs, the RAG approach, and the simulation method applied by the close-source simulation software, several examples are provided to test LLMs' knowledge of the simulation software and the creation of simulation models using two RAG systems. The examples show promising results indicating the benefits of applying RAG systems to closed-source simulation software, helping to access their knowledge. Nevertheless, they also reveal gaps in the applied information and open questions for further research.

What's the Magic Word? A Control Theory of LLM Prompting

Prompt engineering is crucial for deploying LLMs but is poorly understood mathematically. We formalize LLM systems as a class of discrete stochastic dynamical systems to explore prompt engineering through the lens of control theory. We investigate the reachable set of output token sequences R_y(mathbf x_0) for which there exists a control input sequence mathbf u for each mathbf y in R_y(mathbf x_0) that steers the LLM to output mathbf y from initial state sequence mathbf x_0. We offer analytic analysis on the limitations on the controllability of self-attention in terms of reachable set, where we prove an upper bound on the reachable set of outputs R_y(mathbf x_0) as a function of the singular values of the parameter matrices. We present complementary empirical analysis on the controllability of a panel of LLMs, including Falcon-7b, Llama-7b, and Falcon-40b. Our results demonstrate a lower bound on the reachable set of outputs R_y(mathbf x_0) w.r.t. initial state sequences mathbf x_0 sampled from the Wikitext dataset. We find that the correct next Wikitext token following sequence mathbf x_0 is reachable over 97% of the time with prompts of kleq 10 tokens. We also establish that the top 75 most likely next tokens, as estimated by the LLM itself, are reachable at least 85% of the time with prompts of kleq 10 tokens. Intriguingly, short prompt sequences can dramatically alter the likelihood of specific outputs, even making the least likely tokens become the most likely ones. This control-centric analysis of LLMs demonstrates the significant and poorly understood role of input sequences in steering output probabilities, offering a foundational perspective for enhancing language model system capabilities.

Categorical semiotics: Foundations for Knowledge Integration

The integration of knowledge extracted from diverse models, whether described by domain experts or generated by machine learning algorithms, has historically been challenged by the absence of a suitable framework for specifying and integrating structures, learning processes, data transformations, and data models or rules. In this work, we extend algebraic specification methods to address these challenges within such a framework. In our work, we tackle the challenging task of developing a comprehensive framework for defining and analyzing deep learning architectures. We believe that previous efforts have fallen short by failing to establish a clear connection between the constraints a model must adhere to and its actual implementation. Our methodology employs graphical structures that resemble Ehresmann's sketches, interpreted within a universe of fuzzy sets. This approach offers a unified theory that elegantly encompasses both deterministic and non-deterministic neural network designs. Furthermore, we highlight how this theory naturally incorporates fundamental concepts from computer science and automata theory. Our extended algebraic specification framework, grounded in graphical structures akin to Ehresmann's sketches, offers a promising solution for integrating knowledge across disparate models and domains. By bridging the gap between domain-specific expertise and machine-generated insights, we pave the way for more comprehensive, collaborative, and effective approaches to knowledge integration and modeling.

Splitwise: Efficient generative LLM inference using phase splitting

Recent innovations in generative large language models (LLMs) have made their applications and use-cases ubiquitous. This has led to large-scale deployments of these models, using complex, expensive, and power-hungry AI accelerators, most commonly GPUs. These developments make LLM inference efficiency an important challenge. Based on our extensive characterization, we find that there are two main phases during an LLM inference request: a compute-intensive prompt computation, and a memory-intensive token generation, each with distinct latency, throughput, memory, and power characteristics. Despite state-of-the-art batching and scheduling, the token generation phase underutilizes compute resources. Specifically, unlike compute-intensive prompt computation phases, token generation phases do not require the compute capability of the latest GPUs, and can be run with lower power and cost. With Splitwise, we propose splitting the two phases of a LLM inference request on to separate machines. This allows us to use hardware that is well-suited for each phase, and provision resources independently per phase. However, splitting an inference request across machines requires state transfer from the machine running prompt computation over to the machine generating tokens. We implement and optimize this state transfer using the fast back-plane interconnects available in today's GPU clusters. We use the Splitwise technique to design LLM inference clusters using the same or different types of machines for the prompt computation and token generation phases. Our clusters are optimized for three key objectives: throughput, cost, and power. In particular, we show that we can achieve 1.4x higher throughput at 20% lower cost than current designs. Alternatively, we can achieve 2.35x more throughput with the same cost and power budgets.

MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation

Large Language Models (LLMs) have recently shown promise in streamlining hardware design processes by encapsulating vast amounts of domain-specific data. In addition, they allow users to interact with the design processes through natural language instructions, thus making hardware design more accessible to developers. However, effectively leveraging LLMs in hardware design necessitates providing domain-specific data during inference (e.g., through in-context learning), fine-tuning, or pre-training. Unfortunately, existing publicly available hardware datasets are often limited in size, complexity, or detail, which hinders the effectiveness of LLMs in hardware design tasks. To address this issue, we first propose a set of criteria for creating high-quality hardware datasets that can effectively enhance LLM-assisted hardware design. Based on these criteria, we propose a Multi-Grained-Verilog (MG-Verilog) dataset, which encompasses descriptions at various levels of detail and corresponding code samples. To benefit the broader hardware design community, we have developed an open-source infrastructure that facilitates easy access, integration, and extension of the dataset to meet specific project needs. Furthermore, to fully exploit the potential of the MG-Verilog dataset, which varies in complexity and detail, we introduce a balanced fine-tuning scheme. This scheme serves as a unique use case to leverage the diverse levels of detail provided by the dataset. Extensive experiments demonstrate that the proposed dataset and fine-tuning scheme consistently improve the performance of LLMs in hardware design tasks.

ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation

Recently, large language models (LLMs) have demonstrated excellent performance in understanding human instructions and generating code, which has inspired researchers to explore the feasibility of generating RTL code with LLMs. However, the existing approaches to fine-tune LLMs on RTL codes typically are conducted on fixed datasets, which do not fully stimulate the capability of LLMs and require large amounts of reference data. To mitigate these issues , we introduce a simple yet effective iterative training paradigm named ITERTL. During each iteration, samples are drawn from the model trained in the previous cycle. Then these new samples are employed for training in this loop. Through this iterative approach, the distribution mismatch between the model and the training samples is reduced. Additionally, the model is thus enabled to explore a broader generative space and receive more comprehensive feedback. Theoretical analyses are conducted to investigate the mechanism of the effectiveness. Experimental results show the model trained through our proposed approach can compete with and even outperform the state-of-the-art (SOTA) open-source model with nearly 37\% reference samples, achieving remarkable 42.9\% and 62.2\% pass@1 rate on two VerilogEval evaluation datasets respectively. While using the same amount of reference samples, our method can achieved a relative improvement of 16.9\% and 12.5\% in pass@1 compared to the non-iterative method. This study facilitates the application of LLMs for generating RTL code in practical scenarios with limited data.

LifeGPT: Topology-Agnostic Generative Pretrained Transformer Model for Cellular Automata

The Game of Life (Life), a well known algorithm within the broader class of cellular automata (CA), exhibits complex emergent dynamics, with extreme sensitivity to initial conditions. Modeling and predicting such intricate behavior without explicit knowledge of the system's underlying topology presents a significant challenge, motivating the development of algorithms that can generalize across various grid configurations and boundary conditions. We develop a decoder-only generative pretrained transformer model to solve this problem, showing that our model can simulate Life on a toroidal grid with no prior knowledge on the size of the grid, or its periodic boundary conditions (LifeGPT). LifeGPT is topology-agnostic with respect to its training data and our results show that a GPT model is capable of capturing the deterministic rules of a Turing-complete system with near-perfect accuracy, given sufficiently diverse training data. We also introduce the idea of an `autoregressive autoregressor' to recursively implement Life using LifeGPT. Our results pave the path towards true universal computation within a large language model (LLM) framework, synthesizing of mathematical analysis with natural language processing, and probing AI systems for situational awareness about the evolution of such algorithms without ever having to compute them. Similar GPTs could potentially solve inverse problems in multicellular self-assembly by extracting CA-compatible rulesets from real-world biological systems to create new predictive models, which would have significant consequences for the fields of bioinspired materials, tissue engineering, and architected materials design.

Revisiting VerilogEval: Newer LLMs, In-Context Learning, and Specification-to-RTL Tasks

The application of large-language models (LLMs) to digital hardware code generation is an emerging field. Most LLMs are primarily trained on natural language and software code. Hardware code, such as Verilog, represents only a small portion of the training data and few hardware benchmarks exist. To address this gap, the open-source VerilogEval benchmark was released in 2023, providing a consistent evaluation framework for LLMs on code completion tasks. It was tested on state-of-the-art models at the time including GPT-4. However, VerilogEval and other Verilog generation benchmarks lack failure analysis and, in present form, are not conducive to exploring prompting techniques. Also, since VerilogEval's release, both commercial and open-source models have seen continued development. In this work, we evaluate new commercial and open-source models of varying sizes against an improved VerilogEval benchmark suite. We enhance VerilogEval's infrastructure and dataset by automatically classifying failures, introduce new prompts for supporting in-context learning (ICL) examples, and extend the supported tasks to specification-to-RTL translation. We find a measurable improvement in commercial state-of-the-art models, with GPT-4 Turbo achieving a 59% pass rate on spec-to-RTL tasks. We also study the performance of open-source and domain-specific models that have emerged, and demonstrate that models can benefit substantially from ICL. We find that recently-released Llama 3.1 405B achieves a pass rate of 58%, effectively matching that of GPT-4 Turbo, and that the much smaller domain-specific RTL-Coder 6.7B models achieve an impressive 37% pass rate. However, prompt engineering is key to achieving good pass rates, and varies widely with model and task. A benchmark infrastructure that allows for prompt engineering and failure analysis is key to continued model development and deployment.

Vulnerability Detection: From Formal Verification to Large Language Models and Hybrid Approaches: A Comprehensive Overview

Software testing and verification are critical for ensuring the reliability and security of modern software systems. Traditionally, formal verification techniques, such as model checking and theorem proving, have provided rigorous frameworks for detecting bugs and vulnerabilities. However, these methods often face scalability challenges when applied to complex, real-world programs. Recently, the advent of Large Language Models (LLMs) has introduced a new paradigm for software analysis, leveraging their ability to understand insecure coding practices. Although LLMs demonstrate promising capabilities in tasks such as bug prediction and invariant generation, they lack the formal guarantees of classical methods. This paper presents a comprehensive study of state-of-the-art software testing and verification, focusing on three key approaches: classical formal methods, LLM-based analysis, and emerging hybrid techniques, which combine their strengths. We explore each approach's strengths, limitations, and practical applications, highlighting the potential of hybrid systems to address the weaknesses of standalone methods. We analyze whether integrating formal rigor with LLM-driven insights can enhance the effectiveness and scalability of software verification, exploring their viability as a pathway toward more robust and adaptive testing frameworks.

The First Prompt Counts the Most! An Evaluation of Large Language Models on Iterative Example-based Code Generation

The capabilities of Large Language Models (LLMs) in code generation, particularly for implementing target functionalities from natural language descriptions, have been extensively studied. As an alternative form of natural language, input-output examples (I/O examples) provide an accessible, unambiguous, and flexible way to describe functionalities, but the diversity, sparseness, and incompleteness of I/O examples also place challenges on understanding and implementing requirements. Therefore, generating code from input-output examples (i.e., example-based code generation) provides a new perspective, allowing us to evaluate LLMs' capability to infer target functionalities from limited information and to process new-form requirements. However, related research about LLMs in example-based code generation remains largely unexplored. To fill this gap, this paper presents the first comprehensive study on example-based code generation using LLMs. To address the incorrectness caused by the incompleteness of I/O examples, we adopt an iterative evaluation framework and formalize the objective of example-based code generation as two sequential sub-objectives: generating code conforming to given examples and generating code that successfully implements the target functionalities from (iteratively) given examples. We assess six state-of-the-art LLMs using a new benchmark of 168 diverse target functionalities. The results demonstrate that when requirements were described using iterative I/O examples rather than natural language, the LLMs' score decreased by over 60%, indicating that example-based code generation remains challenging for the evaluated LLMs. More interestingly, the vast majority (even over 95%) of successfully implemented functionalities are achieved in the first round of iterations, suggesting that the LLMs struggle to effectively utilize the iteratively supplemented requirements.

RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code

Recent advances in language model (LM) agents and function calling have enabled autonomous, feedback-driven systems to solve problems across various digital domains. To better understand the unique limitations of LM agents, we introduce RefactorBench, a benchmark consisting of 100 large handcrafted multi-file refactoring tasks in popular open-source repositories. Solving tasks within RefactorBench requires thorough exploration of dependencies across multiple files and strong adherence to relevant instructions. Every task is defined by 3 natural language instructions of varying specificity and is mutually exclusive, allowing for the creation of longer combined tasks on the same repository. Baselines on RefactorBench reveal that current LM agents struggle with simple compositional tasks, solving only 22% of tasks with base instructions, in contrast to a human developer with short time constraints solving 87%. Through trajectory analysis, we identify various unique failure modes of LM agents, and further explore the failure mode of tracking past actions. By adapting a baseline agent to condition on representations of state, we achieve a 43.9% improvement in solving RefactorBench tasks. We further extend our state-aware approach to encompass entire digital environments and outline potential directions for future research. RefactorBench aims to support the study of LM agents by providing a set of real-world, multi-hop tasks within the realm of code.

FlashRNN: Optimizing Traditional RNNs on Modern Hardware

While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn

PUMA: Secure Inference of LLaMA-7B in Five Minutes

With ChatGPT as a representative, tons of companies have began to provide services based on large Transformers models. However, using such a service inevitably leak users' prompts to the model provider. Previous studies have studied secure inference for Transformer models using secure multiparty computation (MPC), where model parameters and clients' prompts are kept secret. Despite this, these frameworks are still limited in terms of model performance, efficiency, and deployment. To address these limitations, we propose framework PUMA to enable fast and secure Transformer model inference. Our framework designs high quality approximations for expensive functions, such as GeLU and Softmax, which significantly reduce the cost of secure inference while preserving the model performance. Additionally, we design secure Embedding and LayerNorm procedures that faithfully implement the desired functionality without undermining the Transformer architecture. PUMA is about 2x faster than the state-of-the-art MPC framework MPCFORMER(ICLR 2023) and has similar accuracy as plaintext models without fine-tuning (which the previous works failed to achieve). One more thing, PUMA can evaluate LLaMA-7B in around 5 minutes to generate 1 token. To our best knowledge, this is the first time that a model with such a parameter size is able to be evaluated under MPC. PUMA has been open-sourced in the Github repository of SecretFlow-SPU.

Prompt Alchemy: Automatic Prompt Refinement for Enhancing Code Generation

Code generation has emerged as a key task to automate software development by converting high-level descriptions into executable code. Large language models (LLMs) excel at this but depend heavily on input prompt quality.Manual prompt engineering can be time-consuming and inconsistent, limiting LLM effectiveness. This paper introduces Prochemy, an innovative method for automatically refining prompts to boost code generation. Prochemy overcomes manual prompt limitations by automating optimization, ensuring consistency during inference, and supporting multi-agent systems.It iteratively refines prompts based on model performance, using an optimized final prompt for improved consistency across tasks. We tested Prochemy on natural language-based code generation and translation tasks using three LLM series. Results indicate Prochemy enhances existing methods, improving performance by 5.0% for GPT-3.5-Turbo and 1.9% for GPT-4o over zero-shot baselines on HumanEval. In state-of-the-art LDB, Prochemy + LDB surpasses standalone methods by 1.2-1.8%. For code translation, Prochemy boosts GPT-4o's Java-to-Python (AVATAR) performance from 74.5 to 84.1 (+12.9%) and Python-to-Java from 66.8 to 78.2 (+17.1%). Moreover, Prochemy maintains strong performance when integrated with the o1-mini model, validating its efficacy in code tasks. Designed as plug-and-play, Prochemy optimizes prompts with minimal human input, bridging the gap between simple prompts and complex frameworks.

Universal Fuzzing via Large Language Models

Fuzzing has achieved tremendous success in discovering bugs and vulnerabilities in various software systems. Systems under test (SUTs) that take in programming or formal language as inputs, e.g., compilers, runtime engines, constraint solvers, and software libraries with accessible APIs, are especially important as they are fundamental building blocks of software development. However, existing fuzzers for such systems often target a specific language, and thus cannot be easily applied to other languages or even other versions of the same language. Moreover, the inputs generated by existing fuzzers are often limited to specific features of the input language, and thus can hardly reveal bugs related to other or new features. This paper presents Fuzz4All, the first fuzzer that is universal in the sense that it can target many different input languages and many different features of these languages. The key idea behind Fuzz4All is to leverage large language models (LLMs) as an input generation and mutation engine, which enables the approach to produce diverse and realistic inputs for any practically relevant language. To realize this potential, we present a novel autoprompting technique, which creates LLM prompts that are wellsuited for fuzzing, and a novel LLM-powered fuzzing loop, which iteratively updates the prompt to create new fuzzing inputs. We evaluate Fuzz4All on nine systems under test that take in six different languages (C, C++, Go, SMT2, Java and Python) as inputs. The evaluation shows, across all six languages, that universal fuzzing achieves higher coverage than existing, language-specific fuzzers. Furthermore, Fuzz4All has identified 76 bugs in widely used systems, such as GCC, Clang, Z3, CVC5, OpenJDK, and the Qiskit quantum computing platform, with 47 bugs already confirmed by developers as previously unknown.

SynCode: LLM Generation with Grammar Augmentation

LLMs are widely used in complex AI applications. These applications underscore the need for LLM outputs to adhere to a specific format, for their integration with other components in the systems. Typically the format rules e.g., for data serialization formats such as JSON, YAML, or Code in Programming Language are expressed as context-free grammar (CFG). Due to the hallucinations and unreliability of LLMs, instructing LLMs to adhere to specified syntax becomes an increasingly important challenge. We present SynCode, a novel framework for efficient and general syntactical decoding with LLMs, to address this challenge. SynCode leverages the CFG of a formal language, utilizing an offline-constructed efficient lookup table called DFA mask store based on the discrete finite automaton (DFA) of the language grammar terminals. We demonstrate SynCode's soundness and completeness given the CFG of the formal language, presenting its ability to retain syntactically valid tokens while rejecting invalid ones. SynCode seamlessly integrates with any language defined by CFG, as evidenced by experiments focusing on generating JSON, Python, and Go outputs. Our experiments evaluating the effectiveness of SynCode for JSON generation demonstrate that SynCode eliminates all syntax errors and significantly outperforms state-of-the-art baselines. Furthermore, our results underscore how SynCode significantly reduces 96.07% of syntax errors in generated Python and Go code, showcasing its substantial impact on enhancing syntactical precision in LLM generation. Our code is available at https://github.com/uiuc-focal-lab/syncode

Fine-Tuning Large Language Models on Quantum Optimization Problems for Circuit Generation

Large language models (LLM) have achieved remarkable outcomes in addressing complex problems, including math, coding, and analyzing large amounts of scientific reports. Yet few works have explored the potential of LLM in quantum computing. The most challenging problem is how to leverage LLMs to automatically generate quantum circuits at a large scale. In this paper, we address such a challenge by fine-tuning LLMs and injecting the domain-specific knowledge of quantum computing. In particular, we investigate the mechanisms to generate training data sets and construct the end-to-end pipeline to fine-tune pre-trained LLMs that produce parameterized quantum circuits for optimization problems. We have prepared 14,000 quantum circuits covering a substantial part of the quantum optimization landscape: 12 optimization problem instances and their optimized QAOA, VQE, and adaptive VQE circuits. The fine-tuned LLMs can construct syntactically correct parametrized quantum circuits in the most recent OpenQASM 3.0. We have evaluated the quality of the parameters by comparing them to the optimized expectation values and distributions. Our evaluation shows that the fine-tuned LLM outperforms state-of-the-art models and that the parameters are better than random. The LLM-generated parametrized circuits and initial parameters can be used as a starting point for further optimization, e.g., templates in quantum machine learning and the benchmark for compilers and hardware.

ComPile: A Large IR Dataset from Production Sources

Code is increasingly becoming a core data modality of modern machine learning research impacting not only the way we write code with conversational agents like OpenAI's ChatGPT, Google's Bard, or Anthropic's Claude, the way we translate code from one language into another, but also the compiler infrastructure underlying the language. While modeling approaches may vary and representations differ, the targeted tasks often remain the same within the individual classes of models. Relying solely on the ability of modern models to extract information from unstructured code does not take advantage of 70 years of programming language and compiler development by not utilizing the structure inherent to programs in the data collection. This detracts from the performance of models working over a tokenized representation of input code and precludes the use of these models in the compiler itself. To work towards the first intermediate representation (IR) based models, we fully utilize the LLVM compiler infrastructure, shared by a number of languages, to generate a 182B token dataset of LLVM IR. We generated this dataset from programming languages built on the shared LLVM infrastructure, including Rust, Swift, Julia, and C/C++, by hooking into LLVM code generation either through the language's package manager or the compiler directly to extract the dataset of intermediate representations from production grade programs. Statistical analysis proves the utility of our dataset not only for large language model training, but also for the introspection into the code generation process itself with the dataset showing great promise for machine-learned compiler components.

Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity

The liquid state machine (LSM) combines low training complexity and biological plausibility, which has made it an attractive machine learning framework for edge and neuromorphic computing paradigms. Originally proposed as a model of brain computation, the LSM tunes its internal weights without backpropagation of gradients, which results in lower performance compared to multi-layer neural networks. Recent findings in neuroscience suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics, tuning brain networks to the vicinity of the computationally optimal critical phase transition between order and chaos. Inspired by this disruptive understanding of how brain networks self-tune, we propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics. Similar to its biological counterpart, the astrocyte model integrates neuronal activity and provides global feedback to spike-timing-dependent plasticity (STDP), which self-organizes NALSM dynamics around a critical branching factor that is associated with the edge-of-chaos. We demonstrate that NALSM achieves state-of-the-art accuracy versus comparable LSM methods, without the need for data-specific hand-tuning. With a top accuracy of 97.61% on MNIST, 97.51% on N-MNIST, and 85.84% on Fashion-MNIST, NALSM achieved comparable performance to current fully-connected multi-layer spiking neural networks trained via backpropagation. Our findings suggest that the further development of brain-inspired machine learning methods has the potential to reach the performance of deep learning, with the added benefits of supporting robust and energy-efficient neuromorphic computing on the edge.

Beyond Theorem Proving: Formulation, Framework and Benchmark for Formal Problem-Solving

As a seemingly self-explanatory task, problem-solving has been a significant component of science and engineering. However, a general yet concrete formulation of problem-solving itself is missing. With the recent development of AI-based problem-solving agents, the demand for process-level verifiability is rapidly increasing yet underexplored. To fill these gaps, we present a principled formulation of problem-solving as a deterministic Markov decision process; a novel framework, FPS (Formal Problem-Solving), which utilizes existing FTP (formal theorem proving) environments to perform process-verified problem-solving; and D-FPS (Deductive FPS), decoupling solving and answer verification for better human-alignment. The expressiveness, soundness and completeness of the frameworks are proven. We construct three benchmarks on problem-solving: FormalMath500, a formalization of a subset of the MATH500 benchmark; MiniF2F-Solving and PutnamBench-Solving, adaptations of FTP benchmarks MiniF2F and PutnamBench. For faithful, interpretable, and human-aligned evaluation, we propose RPE (Restricted Propositional Equivalence), a symbolic approach to determine the correctness of answers by formal verification. We evaluate four prevalent FTP models and two prompting methods as baselines, solving at most 23.77% of FormalMath500, 27.47% of MiniF2F-Solving, and 0.31% of PutnamBench-Solving.

Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming

Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.

Unified Functional Hashing in Automatic Machine Learning

The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.

Towards Building the Federated GPT: Federated Instruction Tuning

While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.

SemCoder: Training Code Language Models with Comprehensive Semantics

Code Large Language Models (Code LLMs) have excelled at tasks like code completion but often miss deeper semantics such as execution effects and dynamic states. This paper aims to bridge the gap between Code LLMs' reliance on static text data and the need for thorough semantic understanding for complex tasks like debugging and program repair. We introduce a novel strategy to train Code LLMs with comprehensive semantics, encompassing high-level functional descriptions, local execution effects of individual statements, and overall input/output behavior, thereby linking static code text with dynamic execution states. We begin by collecting PyX, a clean code corpus of fully executable samples with functional descriptions and execution tracing. We propose training Code LLMs to write code and represent and reason about execution behaviors using natural language, mimicking human verbal debugging. This approach led to the development of SemCoder, a Code LLM with only 6.7B parameters, which shows competitive performance with GPT-3.5-turbo on code generation and execution reasoning tasks. SemCoder achieves 81.1% on HumanEval (GPT-3.5-turbo: 76.8%) and 54.5% on CRUXEval-I (GPT-3.5-turbo: 50.3%). We also study the effectiveness of SemCoder's monologue-style execution reasoning compared to concrete scratchpad reasoning, showing that our approach integrates semantics from multiple dimensions more smoothly. Finally, we demonstrate the potential of applying learned semantics to improve Code LLMs' debugging and self-refining capabilities.

On the Parameterization and Initialization of Diagonal State Space Models

State space models (SSM) have recently been shown to be very effective as a deep learning layer as a promising alternative to sequence models such as RNNs, CNNs, or Transformers. The first version to show this potential was the S4 model, which is particularly effective on tasks involving long-range dependencies by using a prescribed state matrix called the HiPPO matrix. While this has an interpretable mathematical mechanism for modeling long dependencies, it introduces a custom representation and algorithm that can be difficult to implement. On the other hand, a recent variant of S4 called DSS showed that restricting the state matrix to be fully diagonal can still preserve the performance of the original model when using a specific initialization based on approximating S4's matrix. This work seeks to systematically understand how to parameterize and initialize such diagonal state space models. While it follows from classical results that almost all SSMs have an equivalent diagonal form, we show that the initialization is critical for performance. We explain why DSS works mathematically, by showing that the diagonal restriction of S4's matrix surprisingly recovers the same kernel in the limit of infinite state dimension. We also systematically describe various design choices in parameterizing and computing diagonal SSMs, and perform a controlled empirical study ablating the effects of these choices. Our final model S4D is a simple diagonal version of S4 whose kernel computation requires just 2 lines of code and performs comparably to S4 in almost all settings, with state-of-the-art results for image, audio, and medical time-series domains, and averaging 85\% on the Long Range Arena benchmark.

When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning

Scaling test-time compute has emerged as a key strategy for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks like mathematical problem-solving. A traditional approach, Self-Consistency (SC), generates multiple solutions to a problem and selects the most common answer via majority voting. Another common method involves scoring each solution with a reward model (verifier) and choosing the best one. Recent advancements in Generative Reward Models (GenRM) reframe verification as a next-token prediction task, enabling inference-time scaling along a new axis. Specifically, GenRM generates multiple verification chains-of-thought to score each solution. Under a limited inference budget, this introduces a fundamental trade-off: should you spend the budget on scaling solutions via SC or generate fewer solutions and allocate compute to verification via GenRM? To address this, we evaluate GenRM against SC under a fixed inference budget. Interestingly, we find that SC is more compute-efficient than GenRM for most practical inference budgets across diverse models and datasets. For instance, GenRM first matches SC after consuming up to 8x the inference compute and requires significantly more compute to outperform it. Furthermore, we derive inference scaling laws for the GenRM paradigm, revealing that compute-optimal inference favors scaling solution generation more aggressively than scaling the number of verifications. Our work provides practical guidance on optimizing test-time scaling by balancing solution generation and verification. The code is available at https://github.com/nishadsinghi/sc-genrm-scaling.

Chain of Code: Reasoning with a Language Model-Augmented Code Emulator

Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter -- we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for linguistic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detect_sarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they are used not only to write the code, but also to selectively "emulate" the interpreter by generating the expected output of "detect_sarcasm(string)" and other lines of code (e.g., that the interpreter could not compile). In this work, we propose Chain of Code (CoT), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format linguistic sub-tasks in a program as flexible pseudocode that the compiler can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. CoT scales well with large and small models alike, and broadens the scope of reasoning questions that LMs can correctly answer by "thinking in code". Project webpage: https://chain-of-code.github.io/.

VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation

Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.

CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation

With the rapid advancement of Large Language Models (LLMs), the demand for robust instruction-following capabilities in code generation tasks has grown significantly. Code generation not only facilitates faster prototyping and automated testing, but also augments developer efficiency through improved maintainability and reusability of code. In this paper, we introduce CodeIF, the first benchmark specifically designed to assess the abilities of LLMs to adhere to task-oriented instructions within diverse code generation scenarios. CodeIF encompasses a broad range of tasks, including function synthesis, error debugging, algorithmic refactoring, and code explanation, thereby providing a comprehensive suite to evaluate model performance across varying complexity levels and programming domains. We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks. The experimental results offer valuable insights into how well current models align with human instructions, as well as the extent to which they can generate consistent, maintainable, and contextually relevant code. Our findings not only underscore the critical role that instruction-following LLMs can play in modern software development, but also illuminate pathways for future research aimed at enhancing their adaptability, reliability, and overall effectiveness in automated code generation.

New Solutions on LLM Acceleration, Optimization, and Application

Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a wide range of applications. However, the increasing size and complexity of LLMs present significant challenges in both training and deployment, leading to substantial computational and storage costs as well as heightened energy consumption. In this paper, we provide a review of recent advancements and research directions aimed at addressing these challenges and enhancing the efficiency of LLM-based systems. We begin by discussing algorithm-level acceleration techniques focused on optimizing LLM inference speed and resource utilization. We also explore LLM-hardware co-design strategies with a vision to improve system efficiency by tailoring hardware architectures to LLM requirements. Further, we delve into LLM-to-accelerator compilation approaches, which involve customizing hardware accelerators for efficient LLM deployment. Finally, as a case study to leverage LLMs for assisting circuit design, we examine LLM-aided design methodologies for an important task: High-Level Synthesis (HLS) functional verification, by creating a new dataset that contains a large number of buggy and bug-free codes, which can be essential for training LLMs to specialize on HLS verification and debugging. For each aspect mentioned above, we begin with a detailed background study, followed by the presentation of several novel solutions proposed to overcome specific challenges. We then outline future research directions to drive further advancements. Through these efforts, we aim to pave the way for more efficient and scalable deployment of LLMs across a diverse range of applications.

QuantumLLMInstruct: A 500k LLM Instruction-Tuning Dataset with Problem-Solution Pairs for Quantum Computing

We present QuantumLLMInstruct (QLMMI), an innovative dataset featuring over 500,000 meticulously curated instruction-following problem-solution pairs designed specifically for quantum computing - the largest and most comprehensive dataset of its kind. Originating from over 90 primary seed domains and encompassing hundreds of subdomains autonomously generated by LLMs, QLMMI marks a transformative step in the diversity and richness of quantum computing datasets. Designed for instruction fine-tuning, QLMMI seeks to significantly improve LLM performance in addressing complex quantum computing challenges across a wide range of quantum physics topics. While Large Language Models (LLMs) have propelled advancements in computational science with datasets like Omni-MATH and OpenMathInstruct, these primarily target Olympiad-level mathematics, leaving quantum computing largely unexplored. The creation of QLMMI follows a rigorous four-stage methodology. Initially, foundational problems are developed using predefined templates, focusing on critical areas such as synthetic Hamiltonians, QASM code generation, Jordan-Wigner transformations, and Trotter-Suzuki quantum circuit decompositions. Next, detailed and domain-specific solutions are crafted to ensure accuracy and relevance. In the third stage, the dataset is enriched through advanced reasoning techniques, including Chain-of-Thought (CoT) and Task-Oriented Reasoning and Action (ToRA), which enhance problem-solution diversity while adhering to strict mathematical standards. Lastly, a zero-shot Judge LLM performs self-assessments to validate the dataset's quality and reliability, minimizing human oversight requirements.

LLM Inference Unveiled: Survey and Roofline Model Insights

The field of efficient Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges. Although the field has expanded and is vibrant, there hasn't been a concise framework that analyzes the various methods of LLM Inference to provide a clear understanding of this domain. Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model for systematic analysis of LLM inference techniques. This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems, such as why LLMs are memory-bound, how much memory and computation they need, and how to choose the right hardware. We systematically collate the latest advancements in efficient LLM inference, covering crucial areas such as model compression (e.g., Knowledge Distillation and Quantization), algorithm improvements (e.g., Early Exit and Mixture-of-Expert), and both hardware and system-level enhancements. Our survey stands out by analyzing these methods with roofline model, helping us understand their impact on memory access and computation. This distinctive approach not only showcases the current research landscape but also delivers valuable insights for practical implementation, positioning our work as an indispensable resource for researchers new to the field as well as for those seeking to deepen their understanding of efficient LLM deployment. The analyze tool, LLM-Viewer, is open-sourced.

Capability Instruction Tuning: A New Paradigm for Dynamic LLM Routing

Large Language Models (LLMs) have demonstrated human-like instruction-following abilities, particularly those exceeding 100 billion parameters. The combined capability of some smaller, resource-friendly LLMs can address most of the instructions that larger LLMs excel at. In this work, we explore how to route the best-performing LLM for each instruction to achieve better overall performance. We develop a new paradigm, constructing capability instructions with model capability representation, user instruction, and performance inquiry prompts to assess the performance. To learn from capability instructions, we introduce a new end-to-end framework called Model Selection with Aptitude Test (Model-SAT), which generates positive and negative samples based on what different models perform well or struggle with. Model-SAT uses a model capability encoder that extends its model representation to a lightweight LLM. Our experiments show that Model-SAT understands the performance dimensions of candidate models and provides the probabilities of their capability to handle various instructions. Additionally, during deployment, a new model can quickly infer its aptitude test results across 50 tasks, each with 20 shots. Model-SAT performs state-of-the-art model routing without candidate inference and in real-world new model-released scenarios. The code is available at https://github.com/Now-Join-Us/CIT-LLM-Routing

Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems

Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation.

Generating a Low-code Complete Workflow via Task Decomposition and RAG

AI technologies are moving rapidly from research to production. With the popularity of Foundation Models (FMs) that generate text, images, and video, AI-based systems are increasing their complexity. Compared to traditional AI-based software, systems employing FMs, or GenAI-based systems, are more difficult to design due to their scale and versatility. This makes it necessary to document best practices, known as design patterns in software engineering, that can be used across GenAI applications. Our first contribution is to formalize two techniques, Task Decomposition and Retrieval-Augmented Generation (RAG), as design patterns for GenAI-based systems. We discuss their trade-offs in terms of software quality attributes and comment on alternative approaches. We recommend to AI practitioners to consider these techniques not only from a scientific perspective but also from the standpoint of desired engineering properties such as flexibility, maintainability, safety, and security. As a second contribution, we describe our industry experience applying Task Decomposition and RAG to build a complex real-world GenAI application for enterprise users: Workflow Generation. The task of generating workflows entails generating a specific plan using data from the system environment, taking as input a user requirement. As these two patterns affect the entire AI development cycle, we explain how they impacted the dataset creation, model training, model evaluation, and deployment phases.

Generate and Pray: Using SALLMS to Evaluate the Security of LLM Generated Code

With the growing popularity of Large Language Models (e.g. GitHub Copilot, ChatGPT, etc.) in software engineers' daily practices, it is important to ensure that the code generated by these tools is not only functionally correct but also free of vulnerabilities. Although LLMs can help developers to be more productive, prior empirical studies have shown that LLMs can generate insecure code. There are two contributing factors to the insecure code generation. First, existing datasets used to evaluate Large Language Models (LLMs) do not adequately represent genuine software engineering tasks sensitive to security. Instead, they are often based on competitive programming challenges or classroom-type coding tasks. In real-world applications, the code produced is integrated into larger codebases, introducing potential security risks. There's a clear absence of benchmarks that focus on evaluating the security of the generated code. Second, existing evaluation metrics primarily focus on the functional correctness of the generated code while ignoring security considerations. Metrics such as pass@k gauge the probability of obtaining the correct code in the top k suggestions. Other popular metrics like BLEU, CodeBLEU, ROUGE, and METEOR similarly emphasize functional accuracy, neglecting security implications. In light of these research gaps, in this paper, we described SALLM, a framework to benchmark LLMs' abilities to generate secure code systematically. This framework has three major components: a novel dataset of security-centric Python prompts, an evaluation environment to test the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.

Learning to Program Variational Quantum Circuits with Fast Weights

Quantum Machine Learning (QML) has surfaced as a pioneering framework addressing sequential control tasks and time-series modeling. It has demonstrated empirical quantum advantages notably within domains such as Reinforcement Learning (RL) and time-series prediction. A significant advancement lies in Quantum Recurrent Neural Networks (QRNNs), specifically tailored for memory-intensive tasks encompassing partially observable environments and non-linear time-series prediction. Nevertheless, QRNN-based models encounter challenges, notably prolonged training duration stemming from the necessity to compute quantum gradients using backpropagation-through-time (BPTT). This predicament exacerbates when executing the complete model on quantum devices, primarily due to the substantial demand for circuit evaluation arising from the parameter-shift rule. This paper introduces the Quantum Fast Weight Programmers (QFWP) as a solution to the temporal or sequential learning challenge. The QFWP leverages a classical neural network (referred to as the 'slow programmer') functioning as a quantum programmer to swiftly modify the parameters of a variational quantum circuit (termed the 'fast programmer'). Instead of completely overwriting the fast programmer at each time-step, the slow programmer generates parameter changes or updates for the quantum circuit parameters. This approach enables the fast programmer to incorporate past observations or information. Notably, the proposed QFWP model achieves learning of temporal dependencies without necessitating the use of quantum recurrent neural networks. Numerical simulations conducted in this study showcase the efficacy of the proposed QFWP model in both time-series prediction and RL tasks. The model exhibits performance levels either comparable to or surpassing those achieved by QLSTM-based models.

LLM-FP4: 4-Bit Floating-Point Quantized Transformers

We propose LLM-FP4 for quantizing both weights and activations in large language models (LLMs) down to 4-bit floating-point values, in a post-training manner. Existing post-training quantization (PTQ) solutions are primarily integer-based and struggle with bit widths below 8 bits. Compared to integer quantization, floating-point (FP) quantization is more flexible and can better handle long-tail or bell-shaped distributions, and it has emerged as a default choice in many hardware platforms. One characteristic of FP quantization is that its performance largely depends on the choice of exponent bits and clipping range. In this regard, we construct a strong FP-PTQ baseline by searching for the optimal quantization parameters. Furthermore, we observe a high inter-channel variance and low intra-channel variance pattern in activation distributions, which adds activation quantization difficulty. We recognize this pattern to be consistent across a spectrum of transformer models designed for diverse tasks, such as LLMs, BERT, and Vision Transformer models. To tackle this, we propose per-channel activation quantization and show that these additional scaling factors can be reparameterized as exponential biases of weights, incurring a negligible cost. Our method, for the first time, can quantize both weights and activations in the LLaMA-13B to only 4-bit and achieves an average score of 63.1 on the common sense zero-shot reasoning tasks, which is only 5.8 lower than the full-precision model, significantly outperforming the previous state-of-the-art by 12.7 points. Code is available at: https://github.com/nbasyl/LLM-FP4.

Solving Challenging Math Word Problems Using GPT-4 Code Interpreter with Code-based Self-Verification

Recent progress in large language models (LLMs) like GPT-4 and PaLM-2 has brought significant advancements in addressing math reasoning problems. In particular, OpenAI's latest version of GPT-4, known as GPT-4 Code Interpreter, shows remarkable performance on challenging math datasets. In this paper, we explore the effect of code on enhancing LLMs' reasoning capability by introducing different constraints on the Code Usage Frequency of GPT-4 Code Interpreter. We found that its success can be largely attributed to its powerful skills in generating and executing code, evaluating the output of code execution, and rectifying its solution when receiving unreasonable outputs. Based on this insight, we propose a novel and effective prompting method, explicit code-based self-verification~(CSV), to further boost the mathematical reasoning potential of GPT-4 Code Interpreter. This method employs a zero-shot prompt on GPT-4 Code Interpreter to encourage it to use code to self-verify its answers. In instances where the verification state registers as ``False'', the model shall automatically amend its solution, analogous to our approach of rectifying errors during a mathematics examination. Furthermore, we recognize that the states of the verification result indicate the confidence of a solution, which can improve the effectiveness of majority voting. With GPT-4 Code Interpreter and CSV, we achieve an impressive zero-shot accuracy on MATH dataset (53.9\% to 84.3\%).

DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation

Code benchmarks such as HumanEval are widely adopted to evaluate the capabilities of Large Language Models (LLMs), providing insights into their strengths and weaknesses. However, current benchmarks primarily exercise LLMs' capability on common coding tasks (e.g., bubble sort, greatest common divisor), leaving domain-specific coding tasks (e.g., computation, system, cryptography) unexplored. To fill this gap, we propose a multi-domain code benchmark, DOMAINEVAL, designed to evaluate LLMs' coding capabilities thoroughly. Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study. Interesting findings are observed by evaluating 12 representative LLMs against DOMAINEVAL. We notice that LLMs are generally good at computation tasks while falling short on cryptography and system coding tasks. The performance gap can be as much as 68.94% (80.94% - 12.0%) in some LLMs. We also observe that generating more samples can increase the overall performance of LLMs, while the domain bias may even increase. The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL, providing directions for future research improvements. The leaderboard is available at https://domaineval.github.io/.

Towards Secure and Private AI: A Framework for Decentralized Inference

The rapid advancement of ML models in critical sectors such as healthcare, finance, and security has intensified the need for robust data security, model integrity, and reliable outputs. Large multimodal foundational models, while crucial for complex tasks, present challenges in scalability, reliability, and potential misuse. Decentralized systems offer a solution by distributing workload and mitigating central points of failure, but they introduce risks of unauthorized access to sensitive data across nodes. We address these challenges with a comprehensive framework designed for responsible AI development. Our approach incorporates: 1) Zero-knowledge proofs for secure model verification, enhancing trust without compromising privacy. 2) Consensus-based verification checks to ensure consistent outputs across nodes, mitigating hallucinations and maintaining model integrity. 3) Split Learning techniques that segment models across different nodes, preserving data privacy by preventing full data access at any point. 4) Hardware-based security through trusted execution environments (TEEs) to protect data and computations. This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems. Promoting efficient resource utilization contributes to more sustainable AI development. Our state-of-the-art proofs and principles demonstrate the framework's effectiveness in responsibly democratizing artificial intelligence, offering a promising approach for building secure and private foundational models.

GEB-1.3B: Open Lightweight Large Language Model

Recently developed large language models (LLMs) such as ChatGPT, Claude, and Llama have demonstrated impressive abilities, and even surpass human-level performance in several tasks. Despite their success, the resource-intensive demands of these models, requiring significant computational power for both training and inference, limit their deployment to high-performance servers. Additionally, the extensive calculation requirements of the models often lead to increased latency in response times. With the increasing need for LLMs to operate efficiently on CPUs, research about lightweight models that are optimized for CPU inference has emerged. In this work, we introduce GEB-1.3B, a lightweight LLM trained on 550 billion tokens in both Chinese and English languages. We employ novel training techniques, including ROPE, Group-Query-Attention, and FlashAttention-2, to accelerate training while maintaining model performance. Additionally, we fine-tune the model using 10 million samples of instruction data to enhance alignment. GEB-1.3B exhibits outstanding performance on general benchmarks such as MMLU, C-Eval, and CMMLU, outperforming comparative models such as MindLLM-1.3B and TinyLLaMA-1.1B. Notably, the FP32 version of GEB-1.3B achieves commendable inference times on CPUs, with ongoing efforts to further enhance speed through advanced quantization techniques. The release of GEB-1.3B as an open-source model marks a significant contribution to the development of lightweight LLMs, promising to foster further research and innovation in the field.

Transformer-Based Models Are Not Yet Perfect At Learning to Emulate Structural Recursion

This paper investigates the ability of transformer-based models to learn structural recursion from examples. Recursion is a universal concept in both natural and formal languages. Structural recursion is central to the programming language and formal mathematics tasks where symbolic tools currently excel beyond neural models, such as inferring semantic relations between datatypes and emulating program behavior. We introduce a general framework that nicely connects the abstract concepts of structural recursion in the programming language domain to concrete sequence modeling problems and learned models' behavior. The framework includes a representation that captures the general syntax of structural recursion, coupled with two different frameworks for understanding their semantics -- one that is more natural from a programming languages perspective and one that helps bridge that perspective with a mechanistic understanding of the underlying transformer architecture. With our framework as a powerful conceptual tool, we identify different issues under various set-ups. The models trained to emulate recursive computations cannot fully capture the recursion yet instead fit short-cut algorithms and thus cannot solve certain edge cases that are under-represented in the training distribution. In addition, it is difficult for state-of-the-art large language models (LLMs) to mine recursive rules from in-context demonstrations. Meanwhile, these LLMs fail in interesting ways when emulating reduction (step-wise computation) of the recursive function.

CoderUJB: An Executable and Unified Java Benchmark for Practical Programming Scenarios

In the evolving landscape of large language models (LLMs) tailored for software engineering, the need for benchmarks that accurately reflect real-world development scenarios is paramount. Current benchmarks are either too simplistic or fail to capture the multi-tasking nature of software development. To address this, we introduce CoderUJB, a new benchmark designed to evaluate LLMs across diverse Java programming tasks that are executable and reflective of actual development scenarios, acknowledging Java's prevalence in real-world software production. CoderUJB comprises 2,239 programming questions derived from 17 real open-source Java projects and spans five practical programming tasks. Our empirical study on this benchmark investigates the coding abilities of various open-source and closed-source LLMs, examining the effects of continued pre-training in specific programming languages code and instruction fine-tuning on their performance. The findings indicate that while LLMs exhibit strong potential, challenges remain, particularly in non-functional code generation (e.g., test generation and defect detection). Importantly, our results advise caution in the specific programming languages continued pre-training and instruction fine-tuning, as these techniques could hinder model performance on certain tasks, suggesting the need for more nuanced strategies. CoderUJB thus marks a significant step towards more realistic evaluations of programming capabilities in LLMs, and our study provides valuable insights for the future development of these models in software engineering.

On the Design and Analysis of LLM-Based Algorithms

We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.

Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for Code Generation

Large language models (LLMs) have showcased remarkable prowess in code generation. However, automated code generation is still challenging since it requires a high-level semantic mapping between natural language requirements and codes. Most existing LLMs-based approaches for code generation rely on decoder-only causal language models often treate codes merely as plain text tokens, i.e., feeding the requirements as a prompt input, and outputing code as flat sequence of tokens, potentially missing the rich semantic features inherent in source code. To bridge this gap, this paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT. Our motivation is that the semantic information of the source code (\eg data flow and control flow) describes more precise program execution behavior, intention and function. By guiding LLM consider and integrate semantic information, we can achieve a more granular understanding and representation of code, enhancing code generation accuracy. Meanwhile, while traditional techniques leveraging such semantic information require complex static or dynamic code analysis to obtain features such as data flow and control flow, SeCoT demonstrates that this process can be fully automated via the intrinsic capabilities of LLMs (i.e., in-context learning), while being generalizable and applicable to challenging domains. While SeCoT can be applied with different LLMs, this paper focuses on the powerful GPT-style models: ChatGPT(close-source model) and WizardCoder(open-source model). The experimental study on three popular DL benchmarks (i.e., HumanEval, HumanEval-ET and MBPP) shows that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.

FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving

Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER3. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,125 lemmas, and 200,646 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3- 8B solves 17.39% (69 -> 81) more problems, and Mistral-7B 12% (75 -> 84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.

A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment

The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.

Solve-Detect-Verify: Inference-Time Scaling with Flexible Generative Verifier

Large Language Model (LLM) reasoning for complex tasks inherently involves a trade-off between solution accuracy and computational efficiency. The subsequent step of verification, while intended to improve performance, further complicates this landscape by introducing its own challenging trade-off: sophisticated Generative Reward Models (GenRMs) can be computationally prohibitive if naively integrated with LLMs at test-time, while simpler, faster methods may lack reliability. To overcome these challenges, we introduce FlexiVe, a novel generative verifier that flexibly balances computational resources between rapid, reliable fast thinking and meticulous slow thinking using a Flexible Allocation of Verification Budget strategy. We further propose the Solve-Detect-Verify pipeline, an efficient inference-time scaling framework that intelligently integrates FlexiVe, proactively identifying solution completion points to trigger targeted verification and provide focused solver feedback. Experiments show FlexiVe achieves superior accuracy in pinpointing errors within reasoning traces on ProcessBench. Furthermore, on challenging mathematical reasoning benchmarks (AIME 2024, AIME 2025, and CNMO), our full approach outperforms baselines like self-consistency in reasoning accuracy and inference efficiency. Our system offers a scalable and effective solution to enhance LLM reasoning at test time.

A Lightweight Framework for High-Quality Code Generation

In recent years, the use of automated source code generation utilizing transformer-based generative models has expanded, and these models can generate functional code according to the requirements of the developers. However, recent research revealed that these automatically generated source codes can contain vulnerabilities and other quality issues. Despite researchers' and practitioners' attempts to enhance code generation models, retraining and fine-tuning large language models is time-consuming and resource-intensive. Thus, we describe FRANC, a lightweight framework for recommending more secure and high-quality source code derived from transformer-based code generation models. FRANC includes a static filter to make the generated code compilable with heuristics and a quality-aware ranker to sort the code snippets based on a quality score. Moreover, the framework uses prompt engineering to fix persistent quality issues. We evaluated the framework with five Python and Java code generation models and six prompt datasets, including a newly created one in this work (SOEval). The static filter improves 9% to 46% Java suggestions and 10% to 43% Python suggestions regarding compilability. The average improvement over the NDCG@10 score for the ranking system is 0.0763, and the repairing techniques repair the highest 80% of prompts. FRANC takes, on average, 1.98 seconds for Java; for Python, it takes 0.08 seconds.

If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code Empowers Large Language Models to Serve as Intelligent Agents

The prominent large language models (LLMs) of today differ from past language models not only in size, but also in the fact that they are trained on a combination of natural language and formal language (code). As a medium between humans and computers, code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity. In this survey, we present an overview of the various benefits of integrating code into LLMs' training data. Specifically, beyond enhancing LLMs in code generation, we observe that these unique properties of code help (i) unlock the reasoning ability of LLMs, enabling their applications to a range of more complex natural language tasks; (ii) steer LLMs to produce structured and precise intermediate steps, which can then be connected to external execution ends through function calls; and (iii) take advantage of code compilation and execution environment, which also provides diverse feedback for model improvement. In addition, we trace how these profound capabilities of LLMs, brought by code, have led to their emergence as intelligent agents (IAs) in situations where the ability to understand instructions, decompose goals, plan and execute actions, and refine from feedback are crucial to their success on downstream tasks. Finally, we present several key challenges and future directions of empowering LLMs with code.

A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification

In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.

Automated Design of Agentic Systems

Researchers are investing substantial effort in developing powerful general-purpose agents, wherein Foundation Models are used as modules within agentic systems (e.g. Chain-of-Thought, Self-Reflection, Toolformer). However, the history of machine learning teaches us that hand-designed solutions are eventually replaced by learned solutions. We formulate a new research area, Automated Design of Agentic Systems (ADAS), which aims to automatically create powerful agentic system designs, including inventing novel building blocks and/or combining them in new ways. We further demonstrate that there is an unexplored yet promising approach within ADAS where agents can be defined in code and new agents can be automatically discovered by a meta agent programming ever better ones in code. Given that programming languages are Turing Complete, this approach theoretically enables the learning of any possible agentic system: including novel prompts, tool use, control flows, and combinations thereof. We present a simple yet effective algorithm named Meta Agent Search to demonstrate this idea, where a meta agent iteratively programs interesting new agents based on an ever-growing archive of previous discoveries. Through extensive experiments across multiple domains including coding, science, and math, we show that our algorithm can progressively invent agents with novel designs that greatly outperform state-of-the-art hand-designed agents. Importantly, we consistently observe the surprising result that agents invented by Meta Agent Search maintain superior performance even when transferred across domains and models, demonstrating their robustness and generality. Provided we develop it safely, our work illustrates the potential of an exciting new research direction toward automatically designing ever-more powerful agentic systems to benefit humanity.

Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models

Large Language Models (LLMs) are often described as being instances of foundation models - that is, models that transfer strongly across various tasks and conditions in few-show or zero-shot manner, while exhibiting scaling laws that predict function improvement when increasing the pre-training scale. These claims of excelling in different functions and tasks rely on measurements taken across various sets of standardized benchmarks showing high scores for such models. We demonstrate here a dramatic breakdown of function and reasoning capabilities of state-of-the-art models trained at the largest available scales which claim strong function, using a simple, short, conventional common sense problem formulated in concise natural language, easily solvable by humans. The breakdown is dramatic, as models also express strong overconfidence in their wrong solutions, while providing often non-sensical "reasoning"-like explanations akin to confabulations to justify and backup the validity of their clearly failed responses, making them sound plausible. Various standard interventions in an attempt to get the right solution, like various type of enhanced prompting, or urging the models to reconsider the wrong solutions again by multi step re-evaluation, fail. We take these initial observations to the scientific and technological community to stimulate urgent re-assessment of the claimed capabilities of current generation of LLMs, Such re-assessment also requires common action to create standardized benchmarks that would allow proper detection of such basic reasoning deficits that obviously manage to remain undiscovered by current state-of-the-art evaluation procedures and benchmarks. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/AIW

On the Workflows and Smells of Leaderboard Operations (LBOps): An Exploratory Study of Foundation Model Leaderboards

Foundation models (FM), such as large language models (LLMs), which are large-scale machine learning (ML) models, have demonstrated remarkable adaptability in various downstream software engineering (SE) tasks, such as code completion, code understanding, and software development. As a result, FM leaderboards, especially those hosted on cloud platforms, have become essential tools for SE teams to compare and select the best third-party FMs for their specific products and purposes. However, the lack of standardized guidelines for FM evaluation and comparison threatens the transparency of FM leaderboards and limits stakeholders' ability to perform effective FM selection. As a first step towards addressing this challenge, our research focuses on understanding how these FM leaderboards operate in real-world scenarios ("leaderboard operations") and identifying potential leaderboard pitfalls and areas for improvement ("leaderboard smells"). In this regard, we perform a multivocal literature review to collect up to 721 FM leaderboards, after which we examine their documentation and engage in direct communication with leaderboard operators to understand their workflow patterns. Using card sorting and negotiated agreement, we identify 5 unique workflow patterns and develop a domain model that outlines the essential components and their interaction within FM leaderboards. We then identify 8 unique types of leaderboard smells in LBOps. By mitigating these smells, SE teams can improve transparency, accountability, and collaboration in current LBOps practices, fostering a more robust and responsible ecosystem for FM comparison and selection.

Efficient Avoidance of Vulnerabilities in Auto-completed Smart Contract Code Using Vulnerability-constrained Decoding

Auto-completing code enables developers to speed up coding significantly. Recent advances in transformer-based large language model (LLM) technologies have been applied to code synthesis. However, studies show that many of such synthesized codes contain vulnerabilities. We propose a novel vulnerability-constrained decoding approach to reduce the amount of vulnerable code generated by such models. Using a small dataset of labeled vulnerable lines of code, we fine-tune an LLM to include vulnerability labels when generating code, acting as an embedded classifier. Then, during decoding, we deny the model to generate these labels to avoid generating vulnerable code. To evaluate the method, we chose to automatically complete Ethereum Blockchain smart contracts (SCs) as the case study due to the strict requirements of SC security. We first fine-tuned the 6-billion-parameter GPT-J model using 186,397 Ethereum SCs after removing the duplication from 2,217,692 SCs. The fine-tuning took more than one week using ten GPUs. The results showed that our fine-tuned model could synthesize SCs with an average BLEU (BiLingual Evaluation Understudy) score of 0.557. However, many codes in the auto-completed SCs were vulnerable. Using the code before the vulnerable line of 176 SCs containing different types of vulnerabilities to auto-complete the code, we found that more than 70% of the auto-completed codes were insecure. Thus, we further fine-tuned the model on other 941 vulnerable SCs containing the same types of vulnerabilities and applied vulnerability-constrained decoding. The fine-tuning took only one hour with four GPUs. We then auto-completed the 176 SCs again and found that our approach could identify 62% of the code to be generated as vulnerable and avoid generating 67% of them, indicating the approach could efficiently and effectively avoid vulnerabilities in the auto-completed code.

Sleep-time Compute: Beyond Inference Scaling at Test-time

Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.

Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs

The recent progress of AI can be largely attributed to large language models (LLMs). However, their escalating memory requirements introduce challenges for machine learning (ML) researchers and engineers. Addressing this requires developers to partition a large model to distribute it across multiple GPUs or TPUs. This necessitates considerable coding and intricate configuration efforts with existing model parallel tools, such as Megatron-LM, DeepSpeed, and Alpa. These tools require users' expertise in machine learning systems (MLSys), creating a bottleneck in LLM development, particularly for developers without MLSys background. In this work, we present Redco, a lightweight and user-friendly tool crafted to automate distributed training and inference for LLMs, as well as to simplify ML pipeline development. The design of Redco emphasizes two key aspects. Firstly, to automate model parallism, our study identifies two straightforward rules to generate tensor parallel strategies for any given LLM. Integrating these rules into Redco facilitates effortless distributed LLM training and inference, eliminating the need of additional coding or complex configurations. We demonstrate the effectiveness by applying Redco on a set of LLM architectures, such as GPT-J, LLaMA, T5, and OPT, up to the size of 66B. Secondly, we propose a mechanism that allows for the customization of diverse ML pipelines through the definition of merely three functions, eliminating redundant and formulaic code like multi-host related processing. This mechanism proves adaptable across a spectrum of ML algorithms, from foundational language modeling to complex algorithms like meta-learning and reinforcement learning. Consequently, Redco implementations exhibit much fewer code lines compared to their official counterparts.

Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models

Large Language Models (LLMs) have become indispensable in numerous real-world applications. Unfortunately, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing methods often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To address these limitations, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (1) it employs widely applied first-order methods for efficient local updates; (2) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (3) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.

A safety realignment framework via subspace-oriented model fusion for large language models

The current safeguard mechanisms for large language models (LLMs) are indeed susceptible to jailbreak attacks, making them inherently fragile. Even the process of fine-tuning on apparently benign data for downstream tasks can jeopardize safety. One potential solution is to conduct safety fine-tuning subsequent to downstream fine-tuning. However, there's a risk of catastrophic forgetting during safety fine-tuning, where LLMs may regain safety measures but lose the task-specific knowledge acquired during downstream fine-tuning. In this paper, we introduce a safety realignment framework through subspace-oriented model fusion (SOMF), aiming to combine the safeguard capabilities of initially aligned model and the current fine-tuned model into a realigned model. Our approach begins by disentangling all task vectors from the weights of each fine-tuned model. We then identify safety-related regions within these vectors by subspace masking techniques. Finally, we explore the fusion of the initial safely aligned LLM with all task vectors based on the identified safety subspace. We validate that our safety realignment framework satisfies the safety requirements of a single fine-tuned model as well as multiple models during their fusion. Our findings confirm that SOMF preserves safety without notably compromising performance on downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math.

CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without Full Large Language Model

Instruction tuning has recently been recognized as an effective way of aligning Large Language Models (LLMs) to enhance their generalization ability across various tasks. However, when tuning publicly accessible, centralized LLMs with private instruction data, privacy concerns are inevitable. While direct transfer of parameterized modules between models is a plausible approach to address this, its implications and effectiveness need further exploration. This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators. Given the limited understanding of the underlying mechanism of OFT, we perform an empirical analysis on LLMs from the perspectives of representation and functional similarity. Interestingly, our findings reveal a unique modular structure within the layers of LLMs that appears to emerge as the model size expands. Simultaneously, we note subtle but potentially significant changes in representation and intermediate predictions across the layers. Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs. CRaSh significantly boosts performance of OFT with billions of parameters. Furthermore, we investigate the optimal solutions yielded by fine-tuning with and without full model through the lens of loss landscape. Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT. The source code is publicly available at https://github.com/TsinghuaC3I/CRaSh.

KV Prediction for Improved Time to First Token

Inference with transformer-based language models begins with a prompt processing step. In this step, the model generates the first output token and stores the KV cache needed for future generation steps. This prompt processing step can be computationally expensive, taking 10s of seconds or more for billion-parameter models on edge devices when prompt lengths or batch sizes rise. This degrades user experience by introducing significant latency into the model's outputs. To reduce the time spent producing the first output (known as the ``time to first token'', or TTFT) of a pretrained model, we introduce a novel method called KV Prediction. In our method, a small auxiliary model is used to process the prompt and produce an approximation of the KV cache used by a base model. This approximated KV cache is then used with the base model for autoregressive generation without the need to query the auxiliary model again. We demonstrate that our method produces a pareto-optimal efficiency-accuracy trade-off when compared to baselines. On TriviaQA, we demonstrate relative accuracy improvements in the range of 15%-50% across a range of TTFT FLOPs budgets. We also demonstrate accuracy improvements of up to 30% on HumanEval python code completion at fixed TTFT FLOPs budgets. Additionally, we benchmark models on an Apple M2 Pro CPU and demonstrate that our improvement in FLOPs translates to a TTFT speedup on hardware. We release our code at https://github.com/apple/corenet/tree/main/projects/kv-prediction .

FAIT: Fault-Aware Fine-Tuning for Better Code Generation

Modern instruction-tuned large language models (LLMs) have made remarkable progress in code generation. However, these LLMs fine-tuned with standard supervised fine-tuning (SFT) sometimes generate plausible-looking but functionally incorrect code variants. This issue likely stems from the limitation of standard SFT, which treats all tokens equally during optimization and fails to emphasize the error-sensitive segments-specific code differences between correct implementations and similar incorrect variants. To address this problem, we propose Fault-Aware Fine-Tuning (FAIT), a novel fine-tuning technique that enhances LLMs' code generation by (1) extracting multi-granularity (line/token-level) differences between correct and incorrect yet similar implementations to identify error-sensitive segments, and (2) dynamically prioritizing those segments during training via dynamic loss weighting. Through extensive experiments on seven LLMs across three widely-used benchmarks, our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training, with some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo. Furthermore, our fine-tuning technique demonstrates strong generalization with performance improvements ranging from 3.8% to 19.1% across diverse instruction-tuned LLMs, and our ablation studies confirm the contributions of different granularities of differences and loss function components.