- An End-to-End Visual-Audio Attention Network for Emotion Recognition in User-Generated Videos Emotion recognition in user-generated videos plays an important role in human-centered computing. Existing methods mainly employ traditional two-stage shallow pipeline, i.e. extracting visual and/or audio features and training classifiers. In this paper, we propose to recognize video emotions in an end-to-end manner based on convolutional neural networks (CNNs). Specifically, we develop a deep Visual-Audio Attention Network (VAANet), a novel architecture that integrates spatial, channel-wise, and temporal attentions into a visual 3D CNN and temporal attentions into an audio 2D CNN. Further, we design a special classification loss, i.e. polarity-consistent cross-entropy loss, based on the polarity-emotion hierarchy constraint to guide the attention generation. Extensive experiments conducted on the challenging VideoEmotion-8 and Ekman-6 datasets demonstrate that the proposed VAANet outperforms the state-of-the-art approaches for video emotion recognition. Our source code is released at: https://github.com/maysonma/VAANet. 9 authors · Feb 12, 2020
- Rasa: Building Expressive Speech Synthesis Systems for Indian Languages in Low-resource Settings We release Rasa, the first multilingual expressive TTS dataset for any Indian language, which contains 10 hours of neutral speech and 1-3 hours of expressive speech for each of the 6 Ekman emotions covering 3 languages: Assamese, Bengali, & Tamil. Our ablation studies reveal that just 1 hour of neutral and 30 minutes of expressive data can yield a Fair system as indicated by MUSHRA scores. Increasing neutral data to 10 hours, with minimal expressive data, significantly enhances expressiveness. This offers a practical recipe for resource-constrained languages, prioritizing easily obtainable neutral data alongside smaller amounts of expressive data. We show the importance of syllabically balanced data and pooling emotions to enhance expressiveness. We also highlight challenges in generating specific emotions, e.g., fear and surprise. 4 authors · Jul 19, 2024
5 SATA-BENCH: Select All That Apply Benchmark for Multiple Choice Questions Large language models (LLMs) are increasingly evaluated on single-answer multiple-choice tasks, yet many real-world problems require identifying all correct answers from a set of options. This capability remains underexplored. We introduce SATA-BENCH, the first dedicated benchmark for evaluating LLMs on Select All That Apply (SATA) questions across diverse domains, including reading comprehension, law, and biomedicine. Our evaluation of 27 open-source and proprietary models reveals a significant gap: even the strongest model achieves only 41.8% exact match, exposing LLMs' inability to reliably identify all correct answers. We find that this weakness stems from two core challenges: selection bias - models favor certain choices regardless of content, and count bias - models fail to predict the correct number of answers. To address these issues, we propose Choice Funnel, a decoding strategy that combines token debiasing with adaptive thresholding to guide models toward complete and accurate selections. Choice Funnel achieves up to 29% higher exact match than competitive baselines while reducing inference cost by over 64%. Our findings expose fundamental limitations in current LLMs and introduce a new framework for diagnosing and improving multi-answer reasoning. We release SATA-BENCH and Choice Funnel to promote LLM development for robust decision-making in realistic, multi-answer applications. 6 authors · May 31 2
- Large Graph Convolutional Network Training with GPU-Oriented Data Communication Architecture Graph Convolutional Networks (GCNs) are increasingly adopted in large-scale graph-based recommender systems. Training GCN requires the minibatch generator traversing graphs and sampling the sparsely located neighboring nodes to obtain their features. Since real-world graphs often exceed the capacity of GPU memory, current GCN training systems keep the feature table in host memory and rely on the CPU to collect sparse features before sending them to the GPUs. This approach, however, puts tremendous pressure on host memory bandwidth and the CPU. This is because the CPU needs to (1) read sparse features from memory, (2) write features into memory as a dense format, and (3) transfer the features from memory to the GPUs. In this work, we propose a novel GPU-oriented data communication approach for GCN training, where GPU threads directly access sparse features in host memory through zero-copy accesses without much CPU help. By removing the CPU gathering stage, our method significantly reduces the consumption of the host resources and data access latency. We further present two important techniques to achieve high host memory access efficiency by the GPU: (1) automatic data access address alignment to maximize PCIe packet efficiency, and (2) asynchronous zero-copy access and kernel execution to fully overlap data transfer with training. We incorporate our method into PyTorch and evaluate its effectiveness using several graphs with sizes up to 111 million nodes and 1.6 billion edges. In a multi-GPU training setup, our method is 65-92% faster than the conventional data transfer method, and can even match the performance of all-in-GPU-memory training for some graphs that fit in GPU memory. 8 authors · Mar 4, 2021
257 Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench). 84 authors · Apr 22, 2024 42
- Unfolding AIS transmission behavior for vessel movement modeling on noisy data leveraging machine learning The oceans are a source of an impressive mixture of complex data that could be used to uncover relationships yet to be discovered. Such data comes from the oceans and their surface, such as Automatic Identification System (AIS) messages used for tracking vessels' trajectories. AIS messages are transmitted over radio or satellite at ideally periodic time intervals but vary irregularly over time. As such, this paper aims to model the AIS message transmission behavior through neural networks for forecasting upcoming AIS messages' content from multiple vessels, particularly in a simultaneous approach despite messages' temporal irregularities as outliers. We present a set of experiments comprising multiple algorithms for forecasting tasks with horizon sizes of varying lengths. Deep learning models (e.g., neural networks) revealed themselves to adequately preserve vessels' spatial awareness regardless of temporal irregularity. We show how convolutional layers, feed-forward networks, and recurrent neural networks can improve such tasks by working together. Experimenting with short, medium, and large-sized sequences of messages, our model achieved 36/37/38% of the Relative Percentage Difference - the lower, the better, whereas we observed 92/45/96% on the Elman's RNN, 51/52/40% on the GRU, and 129/98/61% on the LSTM. These results support our model as a driver for improving the prediction of vessel routes when analyzing multiple vessels of diverging types simultaneously under temporally noise data. 4 authors · Feb 24, 2022