- To the origin of the difference of FSI phases in $B\toππ$ and $B\toρρ$ decays The final state interactions (FSI) model in which soft rescattering of low mass intermediate states dominates is suggested. It explains why the strong interaction phases are large in the B_dtopipi channel and are considerably smaller in the B_dtorhorho one. Direct CP asymmetries of B_dtopipi decays which are determined by FSI phases are considered as well. 2 authors · Apr 3, 2007
- Investigating Lorentz Invariance Violation Effects on CP Violation and Mass Hierarchy sensitivity at DUNE One of the current goals of neutrino experiments is to precisely determine standard unknown oscillation parameters such as the leptonic CP phase and mass hierarchy. Lorentz invariance violation represents a potential physics factor that could influence the experiment's ability to achieve these precise determinations. This study investigates the influence of Lorentz invariance violation (LIV) on oscillation dynamics, particularly through non-isotropic CPT-violating (a^{X}_{emu}, a^{X}_{etau}, a^{X}_{mutau}) and CPT-conserving (c^{XY}_{emu}, c^{XY}_{e tau}, c^{XY}_{mu tau}) parameters within the Deep Underground Neutrino Experiment (DUNE). We analyze the impact of these parameters on the mass hierarchy (MH) and Dirac CP phase sensitivity measurements. Our findings indicate that while MH sensitivity remains relatively unaffected, only the presence of c^{XY}_{mu tau} significantly deteriorates MH sensitivity, albeit remaining above the 5 sigma threshold. Additionally, we observe a substantial compromise in CP sensitivity due to the c^{XY}_{e mu} and c^{XY}_{e tau} parameters. 4 authors · Aug 2, 2024
- Calculation of prompt diphoton production cross sections at Tevatron and LHC energies A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and gluon-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Good agreement is demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests with CDF and DO data. Predictions are shown for distributions of diphoton pairs produced at the energy of the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the signal can be obtained with judicious selection of events. 4 authors · Apr 2, 2007
- Explanation of the 95 GeV γγ and bb excesses in the Minimal Left-Right Symmetric Model We propose a simple interpretation of the gammagamma excesses reported by both CMS and ATLAS groups at 95 GeV together with the LEP excess in the Zbb channel around the same mass in terms of a neutral scalar field in the minimal left-right symmetric model (LRSM). We point out that the scalar field which implements the seesaw mechanism for neutrino masses has all the right properties to explain these observations, without introducing any extra scalar fields. The key point is that this scalar particle is hardly constrained because it couples only to heavy right-handed particles. As a result, the diphoton decay mode receives contributions from both mixing with the Standard Model (SM) Higgs and the heavy charged bosons in the LRSM, depending on the SU(2)_Rtimes U(1)_{B-L} symmetry breaking scale v_R. The complete allowed parameter space for explaining the 95 GeV excesses in this model can be probed with the high-precision measurements of the SM Higgs mixing with other scalars at the high-luminosity LHC and future Higgs factories. 3 authors · Dec 29, 2023
- Measurement of Charm Production Cross Sections in e+e- Annihilation at Energies between 3.97 and 4.26 GeV Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260). 2 authors · Jan 22, 2008