Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMoBE: Mixture-of-Basis-Experts for Compressing MoE-based LLMs
The Mixture-of-Experts (MoE) architecture has become a predominant paradigm for scaling large language models (LLMs). Despite offering strong performance and computational efficiency, large MoE-based LLMs like DeepSeek-V3-0324 and Kimi-K2-Instruct present serious challenges due to substantial memory requirements in deployment. While recent works have explored MoE compression to address this issue, existing methods often suffer from considerable accuracy drops (e.g., 7-14% relatively) even at modest compression rates. This paper introduces a novel Mixture-of-Basis-Experts (MoBE) method that achieves model compression while incurring minimal accuracy drops. Specifically, each up/gate matrix in an expert is decomposed via a rank decomposition as W = AB, where matrix A is unique to each expert. The relatively larger matrix B is further re-parameterized as a linear combination of basis matrices {Bi} shared across all experts within a given MoE layer. The factorization is learned by minimizing the reconstruction error relative to the original weight matrices. Experiments demonstrate that MoBE achieves notably lower accuracy drops compared to prior works. For instance, MoBE can reduce the parameter counts of Qwen3-235B-A22B-2507, DeepSeek-V3-0324 (671B) and Kimi-K2-Instruct (1T) by 24%-30% with only 1%-2% accuracy drop (about 2% drops when measured relatively).
Towards Revealing the Effectiveness of Small-Scale Fine-tuning in R1-style Reinforcement Learning
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has significant influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring sample effect. Hypothetical analysis show that SFT efficiency is limited by training data. Guided by our analysis, we propose Re-distillation, a technique that fine-tunes pretrain model through small-scale distillation from the RL-trained policy. Experiments on Knight & Knave and MATH datasets demonstrate re-distillation's surprising efficiency: re-distilled models match RL performance with far fewer samples and less computation. Empirical verification shows that sample effect is a good indicator of performance improvements. As a result, on K&K dataset, our re-distilled Qwen2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. On MATH, Qwen2.5-1.5B fine-tuned with re-distilled 500 samples matches its instruct-tuned variant without RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning
Cyber-Zero: Training Cybersecurity Agents without Runtime
Large Language Models (LLMs) have achieved remarkable success in software engineering tasks when trained with executable runtime environments, particularly in resolving GitHub issues. However, such runtime environments are often unavailable in other domains, especially cybersecurity, where challenge configurations and execution contexts are ephemeral or restricted. We present Cyber-Zero, the first runtime-free framework for synthesizing high-quality agent trajectories to train cybersecurity LLMs. Cyber-Zero leverages publicly available CTF writeups and employs persona-driven LLM simulation to reverse-engineer runtime behaviors and generate realistic, long-horizon interaction sequences without actual environments. Using trajectories synthesized by Cyber-Zero, we train LLM-based agents that achieve up to 13.1% absolute performance gains over baseline models on three prominent CTF benchmarks: InterCode-CTF, NYU CTF Bench, and Cybench. Our best model, Cyber-Zero-32B, establishes new state-of-the-art performance among open-weight models, matching the capabilities of proprietary systems like DeepSeek-V3-0324 and Claude-3.5-Sonnet while offering superior cost-effectiveness, and demonstrating that runtime-free trajectory synthesis can effectively democratize the development of state-of-the-art cybersecurity agents.
Assembly of Experts: Linear-time construction of the Chimera LLM variants with emergent and adaptable behaviors
Requiring 10^{13}-10^{15} FLOPs to calculate one 8 bit weight in an LLM during pretraining is extremely expensive and seems inefficient. To better leverage the huge investments made into pretrained models, we develop the new "Assembly-of-Experts" (AoE) construction method to create capable child variants of existing Mixture-of-Experts parent models in linear time. Model weight tensors get interpolated individually, allowing to enhance or suppress semantic features of the parents. Varying the proportion of weights taken from the parent models, we observe some properties of the AoE child model changing gradually, while other behavioral traits emerge with a sharp transition. Surprisingly, nearly every generated model is functional and capable, which makes searching the model space straightforward. We construct the DeepSeek R1T "Chimera", a 671B open-weights hybrid model combining DeepSeek's V3-0324 and R1 model variants. The child inherits only the routed expert tensors of R1, but still achieves about R1-level intelligence. At the same time, it uses about 40\% fewer output tokens, close to V3 speed. Constructed without any fine-tuning or distillation, the Chimera exhibits surprisingly compact, orderly reasoning compared to its parent models.
DeepSeek-V3 Technical Report
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks.
DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code Intelligence
The rapid development of large language models has revolutionized code intelligence in software development. However, the predominance of closed-source models has restricted extensive research and development. To address this, we introduce the DeepSeek-Coder series, a range of open-source code models with sizes from 1.3B to 33B, trained from scratch on 2 trillion tokens. These models are pre-trained on a high-quality project-level code corpus and employ a fill-in-the-blank task with a 16K window to enhance code generation and infilling. Our extensive evaluations demonstrate that DeepSeek-Coder not only achieves state-of-the-art performance among open-source code models across multiple benchmarks but also surpasses existing closed-source models like Codex and GPT-3.5. Furthermore, DeepSeek-Coder models are under a permissive license that allows for both research and unrestricted commercial use.
DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
We present DeepSeek-VL2, an advanced series of large Mixture-of-Experts (MoE) Vision-Language Models that significantly improves upon its predecessor, DeepSeek-VL, through two key major upgrades. For the vision component, we incorporate a dynamic tiling vision encoding strategy designed for processing high-resolution images with different aspect ratios. For the language component, we leverage DeepSeekMoE models with the Multi-head Latent Attention mechanism, which compresses Key-Value cache into latent vectors, to enable efficient inference and high throughput. Trained on an improved vision-language dataset, DeepSeek-VL2 demonstrates superior capabilities across various tasks, including but not limited to visual question answering, optical character recognition, document/table/chart understanding, and visual grounding. Our model series is composed of three variants: DeepSeek-VL2-Tiny, DeepSeek-VL2-Small and DeepSeek-VL2, with 1.0B, 2.8B and 4.5B activated parameters respectively. DeepSeek-VL2 achieves competitive or state-of-the-art performance with similar or fewer activated parameters compared to existing open-source dense and MoE-based models. Codes and pre-trained models are publicly accessible at https://github.com/deepseek-ai/DeepSeek-VL2.
Step-3 is Large yet Affordable: Model-system Co-design for Cost-effective Decoding
Large language models (LLMs) face low hardware efficiency during decoding, especially for long-context reasoning tasks. This paper introduces Step-3, a 321B-parameter VLM with hardware-aware model-system co-design optimized for minimizing decoding costs. Step-3 innovates in two key dimensions: (1) A novel Multi-Matrix Factorization Attention (MFA) mechanism that significantly reduces both KV cache size and computation while maintaining high attention expressiveness, and (2) Attention-FFN Disaggregation (AFD), a distributed inference system that decouples attention and Feed-Forward Network (FFN) layers into specialized subsystems. This co-design achieves unprecedented cost efficiency: Step-3 significantly reduces theoretical decoding costs compared with models like DeepSeek-V3 and Qwen3 MoE 235B, with the gains widening at longer context. Step-3 achieves low cost while activating 38B parameters per token (more than DeepSeek-V3 and Qwen3 MoE 235B), demonstrating that hardware-aligned attention arithmetic intensity, MoE sparsity, and AFD are critical to cost-effectiveness. We perform a head-to-head comparison with DeepSeek-V3 in its favorable scenarios. Our implementation on Hopper GPUs achieves a decoding throughput of up to 4,039 tokens per second per GPU under 50ms TPOT SLA (4K context, FP8, no MTP). It is higher than DeepSeek-V3's 2,324 in the same setup and sets a new Pareto frontier for LLM decoding.
Towards Understanding the Safety Boundaries of DeepSeek Models: Evaluation and Findings
This study presents the first comprehensive safety evaluation of the DeepSeek models, focusing on evaluating the safety risks associated with their generated content. Our evaluation encompasses DeepSeek's latest generation of large language models, multimodal large language models, and text-to-image models, systematically examining their performance regarding unsafe content generation. Notably, we developed a bilingual (Chinese-English) safety evaluation dataset tailored to Chinese sociocultural contexts, enabling a more thorough evaluation of the safety capabilities of Chinese-developed models. Experimental results indicate that despite their strong general capabilities, DeepSeek models exhibit significant safety vulnerabilities across multiple risk dimensions, including algorithmic discrimination and sexual content. These findings provide crucial insights for understanding and improving the safety of large foundation models. Our code is available at https://github.com/NY1024/DeepSeek-Safety-Eval.
DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
Mathematical reasoning poses a significant challenge for language models due to its complex and structured nature. In this paper, we introduce DeepSeekMath 7B, which continues pre-training DeepSeek-Coder-Base-v1.5 7B with 120B math-related tokens sourced from Common Crawl, together with natural language and code data. DeepSeekMath 7B has achieved an impressive score of 51.7% on the competition-level MATH benchmark without relying on external toolkits and voting techniques, approaching the performance level of Gemini-Ultra and GPT-4. Self-consistency over 64 samples from DeepSeekMath 7B achieves 60.9% on MATH. The mathematical reasoning capability of DeepSeekMath is attributed to two key factors: First, we harness the significant potential of publicly available web data through a meticulously engineered data selection pipeline. Second, we introduce Group Relative Policy Optimization (GRPO), a variant of Proximal Policy Optimization (PPO), that enhances mathematical reasoning abilities while concurrently optimizing the memory usage of PPO.
Quantitative Analysis of Performance Drop in DeepSeek Model Quantization
Recently, there is a high demand for deploying DeepSeek-R1 and V3 locally, possibly because the official service often suffers from being busy and some organizations have data privacy concerns. While single-machine deployment offers infrastructure simplicity, the models' 671B FP8 parameter configuration exceeds the practical memory limits of a standard 8-GPU machine. Quantization is a widely used technique that helps reduce model memory consumption. However, it is unclear what the performance of DeepSeek-R1 and V3 will be after being quantized. This technical report presents the first quantitative evaluation of multi-bitwidth quantization across the complete DeepSeek model spectrum. Key findings reveal that 4-bit quantization maintains little performance degradation versus FP8 while enabling single-machine deployment on standard NVIDIA GPU devices. We further propose DQ3_K_M, a dynamic 3-bit quantization method that significantly outperforms traditional Q3_K_M variant on various benchmarks, which is also comparable with 4-bit quantization (Q4_K_M) approach in most tasks. Moreover, DQ3_K_M supports single-machine deployment configurations for both NVIDIA H100/A100 and Huawei 910B. Our implementation of DQ3\_K\_M is released at https://github.com/UnicomAI/DeepSeek-Eval, containing optimized 3-bit quantized variants of both DeepSeek-R1 and DeepSeek-V3.
Insights into DeepSeek-V3: Scaling Challenges and Reflections on Hardware for AI Architectures
The rapid scaling of large language models (LLMs) has unveiled critical limitations in current hardware architectures, including constraints in memory capacity, computational efficiency, and interconnection bandwidth. DeepSeek-V3, trained on 2,048 NVIDIA H800 GPUs, demonstrates how hardware-aware model co-design can effectively address these challenges, enabling cost-efficient training and inference at scale. This paper presents an in-depth analysis of the DeepSeek-V3/R1 model architecture and its AI infrastructure, highlighting key innovations such as Multi-head Latent Attention (MLA) for enhanced memory efficiency, Mixture of Experts (MoE) architectures for optimized computation-communication trade-offs, FP8 mixed-precision training to unlock the full potential of hardware capabilities, and a Multi-Plane Network Topology to minimize cluster-level network overhead. Building on the hardware bottlenecks encountered during DeepSeek-V3's development, we engage in a broader discussion with academic and industry peers on potential future hardware directions, including precise low-precision computation units, scale-up and scale-out convergence, and innovations in low-latency communication fabrics. These insights underscore the critical role of hardware and model co-design in meeting the escalating demands of AI workloads, offering a practical blueprint for innovation in next-generation AI systems.
DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search
We introduce DeepSeek-Prover-V1.5, an open-source language model designed for theorem proving in Lean 4, which enhances DeepSeek-Prover-V1 by optimizing both training and inference processes. Pre-trained on DeepSeekMath-Base with specialization in formal mathematical languages, the model undergoes supervised fine-tuning using an enhanced formal theorem proving dataset derived from DeepSeek-Prover-V1. Further refinement is achieved through reinforcement learning from proof assistant feedback (RLPAF). Beyond the single-pass whole-proof generation approach of DeepSeek-Prover-V1, we propose RMaxTS, a variant of Monte-Carlo tree search that employs an intrinsic-reward-driven exploration strategy to generate diverse proof paths. DeepSeek-Prover-V1.5 demonstrates significant improvements over DeepSeek-Prover-V1, achieving new state-of-the-art results on the test set of the high school level miniF2F benchmark (63.5%) and the undergraduate level ProofNet benchmark (25.3%).
ChatGPT vs. DeepSeek: A Comparative Study on AI-Based Code Generation
Background: AI-powered code generation, fueled by Large Language Models (LLMs), is revolutionizing software development. Models like OpenAI's Codex and GPT-4, alongside DeepSeek, leverage vast code and natural language datasets. However, ensuring code quality, correctness, and managing complex tasks remains challenging, necessitating thorough evaluation. Methodology: This research compares ChatGPT (version o1) and DeepSeek (version R1) for Python code generation using online judge coding challenges. It evaluates correctness (online judge verdicts, up to three attempts), code quality (Pylint/Flake8), and efficiency (execution time/memory usage). Results: DeepSeek demonstrated higher correctness, particularly on algorithmic tasks, often achieving 'Accepted' on the first attempt. ChatGPT sometimes requires multiple attempts or failures. ChatGPT encountered fewer issues, used comparable or slightly less memory, consumed less execution times and wrote fewer lines of code. Conclusion: DeepSeek exhibited superior correctness in Python code generation, often requiring fewer attempts, suggesting an advantage in algorithmic problem-solving. Both models showed almost similar efficiency in execution time and memory use. Finally, this research provides insights for developers choosing AI coding assistants and informs future AI-driven software development research.
First Finish Search: Efficient Test-Time Scaling in Large Language Models
Test-time scaling (TTS), which involves dynamic allocation of compute during inference, offers a promising way to improve reasoning in large language models. While existing TTS methods work well, they often rely on long decoding paths or require a large number of samples to be generated, increasing the token usage and inference latency. We observe the surprising fact that for reasoning tasks, shorter traces are much more likely to be correct than longer ones. Motivated by this, we introduce First Finish Search (FFS), a training-free parallel decoding strategy that launches n independent samples and returns as soon as any one completes. We evaluate FFS alongside simple decoding, beam search, majority voting, and budget forcing on four reasoning models (DeepSeek-R1, R1-Distill-Qwen-32B, QwQ-32B and Phi-4-Reasoning-Plus) and across four datasets (AIME24, AIME25-I, AIME25-II and GPQA Diamond). With DeepSeek-R1, FFS achieves 82.23% accuracy on the AIME datasets, a 15% improvement over DeepSeek-R1's standalone accuracy, nearly matching OpenAI's o4-mini performance. Our theoretical analysis explains why stopping at the shortest trace is likely to yield a correct answer and identifies the conditions under which early stopping may be suboptimal. The elegance and simplicity of FFS demonstrate that straightforward TTS strategies can perform remarkably well, revealing the untapped potential of simple approaches at inference time.
DeepSeek LLM: Scaling Open-Source Language Models with Longtermism
The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5.
DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models
In the era of large language models, Mixture-of-Experts (MoE) is a promising architecture for managing computational costs when scaling up model parameters. However, conventional MoE architectures like GShard, which activate the top-K out of N experts, face challenges in ensuring expert specialization, i.e. each expert acquires non-overlapping and focused knowledge. In response, we propose the DeepSeekMoE architecture towards ultimate expert specialization. It involves two principal strategies: (1) finely segmenting the experts into mN ones and activating mK from them, allowing for a more flexible combination of activated experts; (2) isolating K_s experts as shared ones, aiming at capturing common knowledge and mitigating redundancy in routed experts. Starting from a modest scale with 2B parameters, we demonstrate that DeepSeekMoE 2B achieves comparable performance with GShard 2.9B, which has 1.5 times the expert parameters and computation. In addition, DeepSeekMoE 2B nearly approaches the performance of its dense counterpart with the same number of total parameters, which set the upper bound of MoE models. Subsequently, we scale up DeepSeekMoE to 16B parameters and show that it achieves comparable performance with LLaMA2 7B, with only about 40% of computations. Further, our preliminary efforts to scale up DeepSeekMoE to 145B parameters consistently validate its substantial advantages over the GShard architecture, and show its performance comparable with DeepSeek 67B, using only 28.5% (maybe even 18.2%) of computations.
Data-efficient LLM Fine-tuning for Code Generation
Large language models (LLMs) have demonstrated significant potential in code generation tasks. However, there remains a performance gap between open-source and closed-source models. To address this gap, existing approaches typically generate large amounts of synthetic data for fine-tuning, which often leads to inefficient training. In this work, we propose a data selection strategy in order to improve the effectiveness and efficiency of training for code-based LLMs. By prioritizing data complexity and ensuring that the sampled subset aligns with the distribution of the original dataset, our sampling strategy effectively selects high-quality data. Additionally, we optimize the tokenization process through a "dynamic pack" technique, which minimizes padding tokens and reduces computational resource consumption. Experimental results show that when training on 40% of the OSS-Instruct dataset, the DeepSeek-Coder-Base-6.7B model achieves an average performance of 66.9%, surpassing the 66.1% performance with the full dataset. Moreover, training time is reduced from 47 minutes to 34 minutes, and the peak GPU memory decreases from 61.47 GB to 42.72 GB during a single epoch. Similar improvements are observed with the CodeLlama-Python-7B model on the Evol-Instruct dataset. By optimizing both data selection and tokenization, our approach not only improves model performance but also improves training efficiency.
On DeepSeekMoE: Statistical Benefits of Shared Experts and Normalized Sigmoid Gating
Mixture of experts (MoE) methods are a key component in most large language model architectures, including the recent series of DeepSeek models. Compared to other MoE implementations, DeepSeekMoE stands out because of two unique features: the deployment of a shared expert strategy and of the normalized sigmoid gating mechanism. Despite the prominent role of DeepSeekMoE in the success of the DeepSeek series of models, there have been only a few attempts to justify theoretically the value of the shared expert strategy, while its normalized sigmoid gating has remained unexplored. To bridge this gap, we undertake a comprehensive theoretical study of these two features of DeepSeekMoE from a statistical perspective. We perform a convergence analysis of the expert estimation task to highlight the gains in sample efficiency for both the shared expert strategy and the normalized sigmoid gating, offering useful insights into the design of expert and gating structures. To verify empirically our theoretical findings, we carry out several experiments on both synthetic data and real-world datasets for (vision) language modeling tasks. Finally, we conduct an extensive empirical analysis of the router behaviors, ranging from router saturation, router change rate, to expert utilization.
TinyR1-32B-Preview: Boosting Accuracy with Branch-Merge Distillation
The challenge of reducing the size of Large Language Models (LLMs) while maintaining their performance has gained significant attention. However, existing methods, such as model distillation and transfer learning, often fail to achieve high accuracy. To address this limitation, we introduce the Branch-Merge distillation approach, which enhances model compression through two phases: (1) the Branch Phase, where knowledge from a large teacher model is selectively distilled into specialized student models via domain-specific supervised fine-tuning (SFT); And (2) the Merge Phase, where these student models are merged to enable cross-domain knowledge transfer and improve generalization. We validate our distillation approach using DeepSeek-R1 as the teacher and DeepSeek-R1-Distill-Qwen-32B as the student. The resulting merged model, TinyR1-32B-Preview, outperforms its counterpart DeepSeek-R1-Distill-Qwen-32B across multiple benchmarks, including Mathematics (+5.5 points), Coding (+4.4 points) and Science (+2.9 points), while achieving near-equal performance to DeepSeek-R1 on AIME 2024. The Branch-Merge distillation approach provides a scalable solution for creating smaller, high-performing LLMs with reduced computational cost and time.
Evaluation is All You Need: Strategic Overclaiming of LLM Reasoning Capabilities Through Evaluation Design
Reasoning models represented by the Deepseek-R1-Distill series have been widely adopted by the open-source community due to their strong performance in mathematics, science, programming, and other domains. However, our study reveals that their benchmark evaluation results are subject to significant fluctuations caused by various factors. Subtle differences in evaluation conditions can lead to substantial variations in results. Similar phenomena are observed in other open-source inference models fine-tuned based on the Deepseek-R1-Distill series, as well as in the QwQ-32B model, making their claimed performance improvements difficult to reproduce reliably. Therefore, we advocate for the establishment of a more rigorous paradigm for model performance evaluation and present our empirical assessments of the Deepseek-R1-Distill series models.
Skywork Open Reasoner 1 Technical Report
The success of DeepSeek-R1 underscores the significant role of reinforcement learning (RL) in enhancing the reasoning capabilities of large language models (LLMs). In this work, we present Skywork-OR1, an effective and scalable RL implementation for long Chain-of-Thought (CoT) models. Building on the DeepSeek-R1-Distill model series, our RL approach achieves notable performance gains, increasing average accuracy across AIME24, AIME25, and LiveCodeBench from 57.8% to 72.8% (+15.0%) for the 32B model and from 43.6% to 57.5% (+13.9%) for the 7B model. Our Skywork-OR1-32B model surpasses both DeepSeek-R1 and Qwen3-32B on the AIME24 and AIME25 benchmarks, while achieving comparable results on LiveCodeBench. The Skywork-OR1-7B and Skywork-OR1-Math-7B models demonstrate competitive reasoning capabilities among models of similar size. We perform comprehensive ablation studies on the core components of our training pipeline to validate their effectiveness. Additionally, we thoroughly investigate the phenomenon of entropy collapse, identify key factors affecting entropy dynamics, and demonstrate that mitigating premature entropy collapse is critical for improved test performance. To support community research, we fully open-source our model weights, training code, and training datasets.
Temporal Consistency for LLM Reasoning Process Error Identification
Verification is crucial for effective mathematical reasoning. We present a new temporal consistency method where verifiers iteratively refine their judgments based on the previous assessment. Unlike one-round verification or multi-model debate approaches, our method leverages consistency in a sequence of self-reflection actions to improve verification accuracy. Empirical evaluations across diverse mathematical process error identification benchmarks (Mathcheck, ProcessBench, and PRM800K) show consistent performance improvements over baseline methods. When applied to the recent DeepSeek R1 distilled models, our method demonstrates strong performance, enabling 7B/8B distilled models to outperform all 70B/72B models and GPT-4o on ProcessBench. Notably, the distilled 14B model with our method achieves performance comparable to Deepseek-R1. Our codes are available at https://github.com/jcguo123/Temporal-Consistency
CCQ: Convolutional Code for Extreme Low-bit Quantization in LLMs
The rapid scaling of Large Language Models (LLMs) elevates inference costs and compounds substantial deployment barriers. While quantization to 8 or 4 bits mitigates this, sub-3-bit methods face severe accuracy, scalability, and efficiency degradation. We propose Convolutional Code Quantization (CCQ), an inference-optimized quantization approach compressing LLMs to 2.0-2.75 bits with minimal accuracy loss. Departing from error-prone scalar quantization or slow vector quantization, CCQ integrates a hardware-aware bit-shift encoding and decoding solution with Convolutional Code, Hybrid Encoding, and Code Cluster, jointly overcoming accuracy-speed bottlenecks. We construct a lookup-free encoding space, enabling a linear mapping between the codebook and weight vectors, thereby optimizing inference performance. Meanwhile, by drawing on the concept of data mapping from vector quantization, we minimize the performance degradation of the model under extremely low-bit conditions. Experiments demonstrate that CCQ achieves outstanding performance on LLMs across various benchmarks. We compress DeepSeek-V3 (671B total parameters) to 184GB and ERNIE-4.5-300B-A47B to 89GB, enabling single-GPU deployment of ERNIE 4.5 and eliminating inter-card communication. The 2-bit ERNIE-4.5-300B-A47B model and inference engine have been open-sourced.
SIFT: Grounding LLM Reasoning in Contexts via Stickers
This paper identifies the misinterpretation of the context can be a significant issue during the reasoning process of large language models, spanning from smaller models like Llama3.2-3B-Instruct to cutting-edge ones like DeepSeek-R1. For example, in the phrase "10 dollars per kilo," LLMs might not recognize that "per" means "for each," leading to calculation errors. We introduce a novel, post-training approach called **Stick to the Facts (SIFT)** to tackle this. SIFT leverages increasing inference-time compute to ground LLM reasoning in contexts. At the core of SIFT lies the *Sticker*, which is generated by the model itself to explicitly emphasize the key information within the context. Given the curated Sticker, SIFT generates two predictions -- one from the original query and one from the query augmented with the Sticker. If they differ, the Sticker is sequentially refined via *forward* optimization (to better align the extracted facts with the query) and *inverse* generation (to conform with the model's inherent tendencies) for more faithful reasoning outcomes. Studies across diverse models (from 3B to 100B+) and benchmarks (e.g., GSM8K, MATH-500) reveal consistent performance improvements. Notably, SIFT improves the pass@1 accuracy of DeepSeek-R1 on AIME2024 from 78.33% to **85.67**%, establishing a new state-of-the-art in the open-source community. The code is available at https://github.com/zhijie-group/SIFT.
Learning a Continue-Thinking Token for Enhanced Test-Time Scaling
Test-time scaling has emerged as an effective approach for improving language model performance by utilizing additional compute at inference time. Recent studies have shown that overriding end-of-thinking tokens (e.g., replacing "</think>" with "Wait") can extend reasoning steps and improve accuracy. In this work, we explore whether a dedicated continue-thinking token can be learned to trigger extended reasoning. We augment a distilled version of DeepSeek-R1 with a single learned "<|continue-thinking|>" token, training only its embedding via reinforcement learning while keeping the model weights frozen. Our experiments show that this learned token achieves improved accuracy on standard math benchmarks compared to both the baseline model and a test-time scaling approach that uses a fixed token (e.g., "Wait") for budget forcing. In particular, we observe that in cases where the fixed-token approach enhances the base model's accuracy, our method achieves a markedly greater improvement. For example, on the GSM8K benchmark, the fixed-token approach yields a 1.3% absolute improvement in accuracy, whereas our learned-token method achieves a 4.2% improvement over the base model that does not use budget forcing.
V-Seek: Accelerating LLM Reasoning on Open-hardware Server-class RISC-V Platforms
The recent exponential growth of Large Language Models (LLMs) has relied on GPU-based systems. However, CPUs are emerging as a flexible and lower-cost alternative, especially when targeting inference and reasoning workloads. RISC-V is rapidly gaining traction in this area, given its open and vendor-neutral ISA. However, the RISC-V hardware for LLM workloads and the corresponding software ecosystem are not fully mature and streamlined, given the requirement of domain-specific tuning. This paper aims at filling this gap, focusing on optimizing LLM inference on the Sophon SG2042, the first commercially available many-core RISC-V CPU with vector processing capabilities. On two recent state-of-the-art LLMs optimized for reasoning, DeepSeek R1 Distill Llama 8B and DeepSeek R1 Distill QWEN 14B, we achieve 4.32/2.29 token/s for token generation and 6.54/3.68 token/s for prompt processing, with a speed up of up 2.9x/3.0x compared to our baseline.
The Geometry of Self-Verification in a Task-Specific Reasoning Model
How do reasoning models verify their own answers? We study this question by training a model using DeepSeek R1's recipe on the CountDown task. We leverage the fact that preference tuning leads to mode collapse, yielding a model that always produces highly structured chain-of-thought sequences. With this setup, we do top-down and bottom-up analyses to reverse-engineer how the model verifies its outputs. Top-down, we find Gated Linear Unit (GLU) weights encoding verification-related tokens, such as ``success'' or ``incorrect''. Bottom-up, we find that ``previous-token heads'' are mainly responsible for self-verification in our setup. Our analyses meet in the middle: drawing inspiration from inter-layer communication channels, we use the identified GLU weights to localize as few as three attention heads that can disable self-verification, pointing to a necessary component of a potentially larger verification circuit. Finally, we verify that similar verification components exist in our base model and a general reasoning DeepSeek-R1 model.
PreMoe: Lightening MoEs on Constrained Memory by Expert Pruning and Retrieval
Mixture-of-experts (MoE) architectures enable scaling large language models (LLMs) to vast parameter counts without a proportional rise in computational costs. However, the significant memory demands of large MoE models hinder their deployment across various computational environments, from cloud servers to consumer devices. This study first demonstrates pronounced task-specific specialization in expert activation patterns within MoE layers. Building on this, we introduce PreMoe, a novel framework that enables efficient deployment of massive MoE models in memory-constrained environments. PreMoe features two main components: probabilistic expert pruning (PEP) and task-adaptive expert retrieval (TAER). PEP employs a new metric, the task-conditioned expected selection score (TCESS), derived from router logits to quantify expert importance for specific tasks, thereby identifying a minimal set of critical experts. TAER leverages these task-specific expert importance profiles for efficient inference. It pre-computes and stores compact expert patterns for diverse tasks. When a user query is received, TAER rapidly identifies the most relevant stored task pattern and reconstructs the model by loading only the small subset of experts crucial for that task. This approach dramatically reduces the memory footprint across all deployment scenarios. DeepSeek-R1 671B maintains 97.2\% accuracy on MATH500 when pruned to 8/128 configuration (50\% expert reduction), and still achieves 72.0\% with aggressive 8/32 pruning (87.5\% expert reduction). Pangu-Ultra-MoE 718B achieves 97.15\% on MATH500 and 81.3\% on AIME24 with 8/128 pruning, while even more aggressive pruning to 4/64 (390GB memory) preserves 96.95\% accuracy on MATH500. We make our code publicly available at https://github.com/JarvisPei/PreMoe.
Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond
This paper presents our work on the Light-R1 series, with models, data, and code all released. We first focus on training long COT models from scratch, specifically starting from models initially lacking long COT capabilities. Using a curriculum training recipe consisting of two-stage SFT and semi-on-policy DPO, we train our model Light-R1-32B from Qwen2.5-32B-Instruct, resulting in superior math performance compared to DeepSeek-R1-Distill-Qwen-32B. Despite being trained exclusively on math data, Light-R1-32B shows strong generalization across other domains. In the subsequent phase of this work, we highlight the significant benefit of the 3k dataset constructed for the second SFT stage on enhancing other models. By fine-tuning DeepSeek-R1-Distilled models using this dataset, we obtain new SOTA models in 7B and 14B, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying reinforcement learning, specifically GRPO, on long-COT models to further improve reasoning performance. We successfully train our final Light-R1-14B-DS with RL, achieving SOTA performance among 14B parameter models in math. With AIME24 & 25 scores of 74.0 and 60.2 respectively, Light-R1-14B-DS surpasses even many 32B models and DeepSeek-R1-Distill-Llama-70B. Its RL training also exhibits well expected behavior, showing simultaneous increase in response length and reward score. The Light-R1 series of work validates training long-COT models from scratch, showcases the art in SFT data and releases SOTA models from RL.
TransMLA: Multi-head Latent Attention Is All You Need
Modern large language models (LLMs) often encounter communication bottlenecks on current hardware, rather than purely computational constraints. Multi-head Latent Attention (MLA) tackles this challenge by using low-rank matrices in the key-value (KV) layers, thereby allowing compressed latent KV states to be cached. This approach significantly reduces the KV cache size relative to traditional multi-head attention, leading to faster inference. Moreover, MLA employs an up-projection matrix to increase expressiveness, trading additional computation for reduced communication overhead. Although MLA has demonstrated efficiency and effectiveness in Deepseek V2/V3/R1, many major model providers still rely on Group Query Attention (GQA) and have not announced any plans to adopt MLA. In this paper, we show that GQA can always be represented by MLA while maintaining the same KV cache overhead, but the converse does not hold. To encourage broader use of MLA, we introduce **TransMLA**, a post-training method that converts widely used GQA-based pre-trained models (e.g., LLaMA, Qwen, Mixtral) into MLA-based models. After conversion, the model can undergo additional training to boost expressiveness without increasing the KV cache size. Furthermore, we plan to develop MLA-specific inference acceleration techniques to preserve low latency in transformed models, thus enabling more efficient distillation of Deepseek R1.
VeriThinker: Learning to Verify Makes Reasoning Model Efficient
Large Reasoning Models (LRMs) excel at complex tasks using Chain-of-Thought (CoT) reasoning. However, their tendency to overthinking leads to unnecessarily lengthy reasoning chains, dramatically increasing inference costs. To mitigate this issue, we introduce VeriThinker, a novel approach for CoT compression. Unlike conventional methods that fine-tune LRMs directly on the original reasoning task using synthetic concise CoT data, we innovatively fine-tune the model solely through an auxiliary verification task. By training LRMs to accurately verify the correctness of CoT solutions, the LRMs inherently become more discerning about the necessity of subsequent self-reflection steps, thereby effectively suppressing overthinking. Extensive experiments validate that VeriThinker substantially reduces reasoning chain lengths while maintaining or even slightly improving accuracy. When applied to DeepSeek-R1-Distill-Qwen-7B, our approach reduces reasoning tokens on MATH500 from 3790 to 2125 while improving accuracy by 0.8% (94.0% to 94.8%), and on AIME25, tokens decrease from 14321 to 10287 with a 2.1% accuracy gain (38.7% to 40.8%). Additionally, our experiments demonstrate that VeriThinker can also be zero-shot generalized to speculative reasoning. Code is available at https://github.com/czg1225/VeriThinker
ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation
Code generation plays a crucial role in various tasks, such as code auto-completion and mathematical reasoning. Previous work has proposed numerous methods to enhance code generation performance, including integrating feedback from the compiler. Inspired by this, we present ReflectionCoder, a novel approach that effectively leverages reflection sequences constructed by integrating compiler feedback to improve one-off code generation performance. Furthermore, we propose reflection self-distillation and dynamically masked distillation to effectively utilize these reflection sequences. Extensive experiments on three benchmarks, i.e., HumanEval (+), MBPP (+), and MultiPl-E, demonstrate that models fine-tuned with our method achieve state-of-the-art performance. Notably, ReflectionCoder-DeepSeek-Coder-33B reaches pass@1 of 82.9 (76.8) on HumanEval (+) and 84.1 (72.0) on MBPP (+), on par with GPT-3.5-Turbo and Claude-3-opus, and surpasses early GPT-4. Beyond the code domain, we believe this approach can benefit other domains that focus on final results and require long reasoning paths. Code and data are available at https://github.com/SenseLLM/ReflectionCoder.
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Scaling the amount of compute used to train language models has dramatically improved their capabilities. However, when it comes to inference, we often limit the amount of compute to only one attempt per problem. Here, we explore inference compute as another axis for scaling by increasing the number of generated samples. Across multiple tasks and models, we observe that coverage - the fraction of problems solved by any attempt - scales with the number of samples over four orders of magnitude. In domains like coding and formal proofs, where all answers can be automatically verified, these increases in coverage directly translate into improved performance. When we apply repeated sampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-V2-Coder-Instruct increases from 15.9% with one sample to 56% with 250 samples, outperforming the single-attempt state-of-the-art of 43% which uses more capable frontier models. Moreover, using current API pricing, amplifying the cheaper DeepSeek model with five samples is more cost-effective and solves more issues than paying a premium for one sample from GPT-4o or Claude 3.5 Sonnet. Interestingly, the relationship between coverage and the number of samples is often log-linear and can be modelled with an exponentiated power law, suggesting the existence of inference-time scaling laws. Finally, we find that identifying correct samples out of many generations remains an important direction for future research in domains without automatic verifiers. When solving math word problems from GSM8K and MATH, coverage with Llama-3 models grows to over 95% with 10,000 samples. However, common methods to pick correct solutions from a sample collection, such as majority voting or reward models, plateau beyond several hundred samples and fail to fully scale with the sample budget.
DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale
As the training of giant dense models hits the boundary on the availability and capability of the hardware resources today, Mixture-of-Experts (MoE) models become one of the most promising model architectures due to their significant training cost reduction compared to a quality-equivalent dense model. Its training cost saving is demonstrated from encoder-decoder models (prior works) to a 5x saving for auto-aggressive language models (this work along with parallel explorations). However, due to the much larger model size and unique architecture, how to provide fast MoE model inference remains challenging and unsolved, limiting its practical usage. To tackle this, we present DeepSpeed-MoE, an end-to-end MoE training and inference solution as part of the DeepSpeed library, including novel MoE architecture designs and model compression techniques that reduce MoE model size by up to 3.7x, and a highly optimized inference system that provides 7.3x better latency and cost compared to existing MoE inference solutions. DeepSpeed-MoE offers an unprecedented scale and efficiency to serve massive MoE models with up to 4.5x faster and 9x cheaper inference compared to quality-equivalent dense models. We hope our innovations and systems help open a promising path to new directions in the large model landscape, a shift from dense to sparse MoE models, where training and deploying higher-quality models with fewer resources becomes more widely possible.
Value-Guided Search for Efficient Chain-of-Thought Reasoning
In this paper, we propose a simple and efficient method for value model training on long-context reasoning traces. Compared to existing process reward models (PRMs), our method does not require a fine-grained notion of "step," which is difficult to define for long-context reasoning models. By collecting a dataset of 2.5 million reasoning traces, we train a 1.5B token-level value model and apply it to DeepSeek models for improved performance with test-time compute scaling. We find that block-wise value-guided search (VGS) with a final weighted majority vote achieves better test-time scaling than standard methods such as majority voting or best-of-n. With an inference budget of 64 generations, VGS with DeepSeek-R1-Distill-1.5B achieves an average accuracy of 45.7% across four competition math benchmarks (AIME 2024 & 2025, HMMT Feb 2024 & 2025), reaching parity with o3-mini-medium. Moreover, VGS significantly reduces the inference FLOPs required to achieve the same performance of majority voting. Our dataset, model and codebase are open-sourced.
StarCoder 2 and The Stack v2: The Next Generation
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
Serving Large Language Models on Huawei CloudMatrix384
The rapid evolution of large language models (LLMs), driven by growing parameter scales, adoption of mixture-of-experts (MoE) architectures, and expanding context lengths, imposes unprecedented demands on AI infrastructure. Traditional AI clusters face limitations in compute intensity, memory bandwidth, inter-chip communication, and latency, compounded by variable workloads and strict service-level objectives. Addressing these issues requires fundamentally redesigned hardware-software integration. This paper introduces Huawei CloudMatrix, a next-generation AI datacenter architecture, realized in the production-grade CloudMatrix384 supernode. It integrates 384 Ascend 910C NPUs and 192 Kunpeng CPUs interconnected via an ultra-high-bandwidth Unified Bus (UB) network, enabling direct all-to-all communication and dynamic pooling of resources. These features optimize performance for communication-intensive operations, such as large-scale MoE expert parallelism and distributed key-value cache access. To fully leverage CloudMatrix384, we propose CloudMatrix-Infer, an advanced LLM serving solution incorporating three core innovations: a peer-to-peer serving architecture that independently scales prefill, decode, and caching; a large-scale expert parallelism strategy supporting EP320 via efficient UB-based token dispatch; and hardware-aware optimizations including specialized operators, microbatch-based pipelining, and INT8 quantization. Evaluation with the DeepSeek-R1 model shows CloudMatrix-Infer achieves state-of-the-art efficiency: prefill throughput of 6,688 tokens/s per NPU and decode throughput of 1,943 tokens/s per NPU (<50 ms TPOT). It effectively balances throughput and latency, sustaining 538 tokens/s even under stringent 15 ms latency constraints, while INT8 quantization maintains model accuracy across benchmarks.
DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models
Computation in a typical Transformer-based large language model (LLM) can be characterized by batch size, hidden dimension, number of layers, and sequence length. Until now, system works for accelerating LLM training have focused on the first three dimensions: data parallelism for batch size, tensor parallelism for hidden size and pipeline parallelism for model depth or layers. These widely studied forms of parallelism are not targeted or optimized for long sequence Transformer models. Given practical application needs for long sequence LLM, renewed attentions are being drawn to sequence parallelism. However, existing works in sequence parallelism are constrained by memory-communication inefficiency, limiting their scalability to long sequence large models. In this work, we introduce DeepSpeed-Ulysses, a novel, portable and effective methodology for enabling highly efficient and scalable LLM training with extremely long sequence length. DeepSpeed-Ulysses at its core partitions input data along the sequence dimension and employs an efficient all-to-all collective communication for attention computation. Theoretical communication analysis shows that whereas other methods incur communication overhead as sequence length increases, DeepSpeed-Ulysses maintains constant communication volume when sequence length and compute devices are increased proportionally. Furthermore, experimental evaluations show that DeepSpeed-Ulysses trains 2.5X faster with 4X longer sequence length than the existing method SOTA baseline.
Faster MoE LLM Inference for Extremely Large Models
Sparse Mixture of Experts (MoE) large language models (LLMs) are gradually becoming the mainstream approach for ultra-large-scale models. Existing optimization efforts for MoE models have focused primarily on coarse-grained MoE architectures. With the emergence of DeepSeek Models, fine-grained MoE models are gaining popularity, yet research on them remains limited. Therefore, we want to discuss the efficiency dynamic under different service loads. Additionally, fine-grained models allow deployers to reduce the number of routed experts, both activated counts and total counts, raising the question of how this reduction affects the trade-off between MoE efficiency and performance. Our findings indicate that while deploying MoE models presents greater challenges, it also offers significant optimization opportunities. Reducing the number of activated experts can lead to substantial efficiency improvements in certain scenarios, with only minor performance degradation. Reducing the total number of experts provides limited efficiency gains but results in severe performance degradation. Our method can increase throughput by at least 10\% without any performance degradation. Overall, we conclude that MoE inference optimization remains an area with substantial potential for exploration and improvement.
DeepSpeed-FastGen: High-throughput Text Generation for LLMs via MII and DeepSpeed-Inference
The deployment and scaling of large language models (LLMs) have become critical as they permeate various applications, demanding high-throughput and low-latency serving systems. Existing frameworks struggle to balance these requirements, especially for workloads with long prompts. This paper introduces DeepSpeed-FastGen, a system that employs Dynamic SplitFuse, a novel prompt and generation composition strategy, to deliver up to 2.3x higher effective throughput, 2x lower latency on average, and up to 3.7x lower (token-level) tail latency, compared to state-of-the-art systems like vLLM. We leverage a synergistic combination of DeepSpeed-MII and DeepSpeed-Inference to provide an efficient and easy-to-use serving system for LLMs. DeepSpeed-FastGen's advanced implementation supports a range of models and offers both non-persistent and persistent deployment options, catering to diverse user scenarios from interactive sessions to long-running applications. We present a detailed benchmarking methodology, analyze the performance through latency-throughput curves, and investigate scalability via load balancing. Our evaluations demonstrate substantial improvements in throughput and latency across various models and hardware configurations. We discuss our roadmap for future enhancements, including broader model support and new hardware backends. The DeepSpeed-FastGen code is readily available for community engagement and contribution.
Code Summarization Beyond Function Level
Code summarization is a critical task in natural language processing and software engineering, which aims to generate concise descriptions of source code. Recent advancements have improved the quality of these summaries, enhancing code readability and maintainability. However, the content of a repository or a class has not been considered in function code summarization. This study investigated the effectiveness of code summarization models beyond the function level, exploring the impact of class and repository contexts on the summary quality. The study involved revising benchmarks for evaluating models at class and repository levels, assessing baseline models, and evaluating LLMs with in-context learning to determine the enhancement of summary quality with additional context. The findings revealed that the fine-tuned state-of-the-art CodeT5+ base model excelled in code summarization, while incorporating few-shot learning and retrieved code chunks from RAG significantly enhanced the performance of LLMs in this task. Notably, the Deepseek Coder 1.3B and Starcoder2 15B models demonstrated substantial improvements in metrics such as BLEURT, METEOR, and BLEU-4 at both class and repository levels. Repository-level summarization exhibited promising potential but necessitates significant computational resources and gains from the inclusion of structured context. Lastly, we employed the recent SIDE code summarization metric in our evaluation. This study contributes to refining strategies for prompt engineering, few-shot learning, and RAG, addressing gaps in benchmarks for code summarization at various levels. Finally, we publish all study details, code, datasets, and results of evaluation in the GitHub repository available at https://github.com/kilimanj4r0/code-summarization-beyond-function-level.
Flexible Realignment of Language Models
Realignment becomes necessary when a language model (LM) fails to meet expected performance. We propose a flexible realignment framework that supports quantitative control of alignment degree during training and inference. This framework incorporates Training-time Realignment (TrRa), which efficiently realigns the reference model by leveraging the controllable fusion of logits from both the reference and already aligned models. For example, TrRa reduces token usage by 54.63% on DeepSeek-R1-Distill-Qwen-1.5B without any performance degradation, outperforming DeepScaleR-1.5B's 33.86%. To complement TrRa during inference, we introduce a layer adapter that enables smooth Inference-time Realignment (InRa). This adapter is initialized to perform an identity transformation at the bottom layer and is inserted preceding the original layers. During inference, input embeddings are simultaneously processed by the adapter and the original layer, followed by the remaining layers, and then controllably interpolated at the logit level. We upgraded DeepSeek-R1-Distill-Qwen-7B from a slow-thinking model to one that supports both fast and slow thinking, allowing flexible alignment control even during inference. By encouraging deeper reasoning, it even surpassed its original performance.
Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
Preference Optimization for Reasoning with Pseudo Feedback
Preference optimization techniques, such as Direct Preference Optimization (DPO), are frequently employed to enhance the reasoning capabilities of large language models (LLMs) in domains like mathematical reasoning and coding, typically following supervised fine-tuning. These methods rely on high-quality labels for reasoning tasks to generate preference pairs; however, the availability of reasoning datasets with human-verified labels is limited. In this study, we introduce a novel approach to generate pseudo feedback for reasoning tasks by framing the labeling of solutions to reason problems as an evaluation against associated test cases. We explore two forms of pseudo feedback based on test cases: one generated by frontier LLMs and the other by extending self-consistency to multi-test-case. We conduct experiments on both mathematical reasoning and coding tasks using pseudo feedback for preference optimization, and observe improvements across both tasks. Specifically, using Mathstral-7B as our base model, we improve MATH results from 58.3 to 68.6, surpassing both NuminaMath-72B and GPT-4-Turbo-1106-preview. In GSM8K and College Math, our scores increase from 85.6 to 90.3 and from 34.3 to 42.3, respectively. Building on Deepseek-coder-7B-v1.5, we achieve a score of 24.6 on LiveCodeBench (from 21.1), surpassing Claude-3-Haiku.
PENCIL: Long Thoughts with Short Memory
While recent works (e.g. o1, DeepSeek R1) have demonstrated great promise of using long Chain-of-Thought (CoT) to improve reasoning capabilities of language models, scaling it up during test-time is challenging due to inefficient memory usage -- intermediate computations accumulate indefinitely in context even no longer needed for future thoughts. We propose PENCIL, which incorporates a reduction mechanism into the autoregressive generation process, allowing the model to recursively clean up intermediate thoughts based on patterns learned from training. With this reduction mechanism, PENCIL significantly reduces the maximal context length required during generation, and thus can generate longer thoughts with limited memory, solving larger-scale problems given more thinking time. For example, we demonstrate PENCIL achieves 97\% accuracy on the challenging Einstein's puzzle -- a task even large models like GPT-4 struggle with -- using only a small 25M-parameter transformer with 2048 context length. Theoretically, we prove PENCIL can perform universal space-efficient computation by simulating Turing machines with optimal time and space complexity, and thus can solve arbitrary computational tasks that would otherwise be intractable given context window constraints.
OTOv3: Automatic Architecture-Agnostic Neural Network Training and Compression from Structured Pruning to Erasing Operators
Compressing a predefined deep neural network (DNN) into a compact sub-network with competitive performance is crucial in the efficient machine learning realm. This topic spans various techniques, from structured pruning to neural architecture search, encompassing both pruning and erasing operators perspectives. Despite advancements, existing methods suffers from complex, multi-stage processes that demand substantial engineering and domain knowledge, limiting their broader applications. We introduce the third-generation Only-Train-Once (OTOv3), which first automatically trains and compresses a general DNN through pruning and erasing operations, creating a compact and competitive sub-network without the need of fine-tuning. OTOv3 simplifies and automates the training and compression process, minimizes the engineering efforts required from users. It offers key technological advancements: (i) automatic search space construction for general DNNs based on dependency graph analysis; (ii) Dual Half-Space Projected Gradient (DHSPG) and its enhanced version with hierarchical search (H2SPG) to reliably solve (hierarchical) structured sparsity problems and ensure sub-network validity; and (iii) automated sub-network construction using solutions from DHSPG/H2SPG and dependency graphs. Our empirical results demonstrate the efficacy of OTOv3 across various benchmarks in structured pruning and neural architecture search. OTOv3 produces sub-networks that match or exceed the state-of-the-arts. The source code will be available at https://github.com/tianyic/only_train_once.
Lookahead Optimizer: k steps forward, 1 step back
The vast majority of successful deep neural networks are trained using variants of stochastic gradient descent (SGD) algorithms. Recent attempts to improve SGD can be broadly categorized into two approaches: (1) adaptive learning rate schemes, such as AdaGrad and Adam, and (2) accelerated schemes, such as heavy-ball and Nesterov momentum. In this paper, we propose a new optimization algorithm, Lookahead, that is orthogonal to these previous approaches and iteratively updates two sets of weights. Intuitively, the algorithm chooses a search direction by looking ahead at the sequence of fast weights generated by another optimizer. We show that Lookahead improves the learning stability and lowers the variance of its inner optimizer with negligible computation and memory cost. We empirically demonstrate Lookahead can significantly improve the performance of SGD and Adam, even with their default hyperparameter settings on ImageNet, CIFAR-10/100, neural machine translation, and Penn Treebank.
Can Large Reasoning Models do Analogical Reasoning under Perceptual Uncertainty?
This work presents a first evaluation of two state-of-the-art Large Reasoning Models (LRMs), OpenAI's o3-mini and DeepSeek R1, on analogical reasoning, focusing on well-established nonverbal human IQ tests based on Raven's progressive matrices. We benchmark with the I-RAVEN dataset and its more difficult extension, I-RAVEN-X, which tests the ability to generalize to longer reasoning rules and ranges of the attribute values. To assess the influence of visual uncertainties on these nonverbal analogical reasoning tests, we extend the I-RAVEN-X dataset, which otherwise assumes an oracle perception. We adopt a two-fold strategy to simulate this imperfect visual perception: 1) we introduce confounding attributes which, being sampled at random, do not contribute to the prediction of the correct answer of the puzzles and 2) smoothen the distributions of the input attributes' values. We observe a sharp decline in OpenAI's o3-mini task accuracy, dropping from 86.6% on the original I-RAVEN to just 17.0% -- approaching random chance -- on the more challenging I-RAVEN-X, which increases input length and range and emulates perceptual uncertainty. This drop occurred despite spending 3.4x more reasoning tokens. A similar trend is also observed for DeepSeek R1: from 80.6% to 23.2%. On the other hand, a neuro-symbolic probabilistic abductive model, ARLC, that achieves state-of-the-art performances on I-RAVEN, can robustly reason under all these out-of-distribution tests, maintaining strong accuracy with only a modest reduction from 98.6% to 88.0%. Our code is available at https://github.com/IBM/raven-large-language-models.
Can LLMs Maintain Fundamental Abilities under KV Cache Compression?
This paper investigates an under-explored challenge in large language models (LLMs): the impact of KV cache compression methods on LLMs' fundamental capabilities. While existing methods achieve impressive compression ratios on long-context benchmarks, their effects on core model capabilities remain understudied. We present a comprehensive empirical study evaluating prominent KV cache compression methods across diverse tasks, spanning world knowledge, commonsense reasoning, arithmetic reasoning, code generation, safety, and long-context understanding and generation.Our analysis reveals that KV cache compression methods exhibit task-specific performance degradation. Arithmetic reasoning tasks prove particularly sensitive to aggressive compression, with different methods showing performance drops of 17.4%-43.3%. Notably, the DeepSeek R1 Distill model exhibits more robust compression tolerance compared to instruction-tuned models, showing only 9.67%-25.53% performance degradation. Based on our analysis of attention patterns and cross-task compression performance, we propose ShotKV, a novel compression approach that distinctly handles prefill and decoding phases while maintaining shot-level semantic coherence. Empirical results show that ShotKV achieves 9%-18% performance improvements on long-context generation tasks under aggressive compression ratios.
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
In this paper, we present an improved feedforward sequential memory networks (FSMN) architecture, namely Deep-FSMN (DFSMN), by introducing skip connections between memory blocks in adjacent layers. These skip connections enable the information flow across different layers and thus alleviate the gradient vanishing problem when building very deep structure. As a result, DFSMN significantly benefits from these skip connections and deep structure. We have compared the performance of DFSMN to BLSTM both with and without lower frame rate (LFR) on several large speech recognition tasks, including English and Mandarin. Experimental results shown that DFSMN can consistently outperform BLSTM with dramatic gain, especially trained with LFR using CD-Phone as modeling units. In the 2000 hours Fisher (FSH) task, the proposed DFSMN can achieve a word error rate of 9.4% by purely using the cross-entropy criterion and decoding with a 3-gram language model, which achieves a 1.5% absolute improvement compared to the BLSTM. In a 20000 hours Mandarin recognition task, the LFR trained DFSMN can achieve more than 20% relative improvement compared to the LFR trained BLSTM. Moreover, we can easily design the lookahead filter order of the memory blocks in DFSMN to control the latency for real-time applications.
PRIMA.CPP: Speeding Up 70B-Scale LLM Inference on Low-Resource Everyday Home Clusters
Emergency of DeepSeek R1 and QwQ 32B have broken through performance barriers for running frontier large language models (LLMs) on home devices. While consumer hardware is getting stronger and model quantization is improving, existing end-side solutions still demand GPU clusters, large RAM/VRAM, and high bandwidth, far beyond what a common home cluster can handle. This paper introduces prima.cpp, a distributed inference system that runs 70B-scale models on everyday home devices using a mix of CPU/GPU, low RAM/VRAM, Wi-Fi, and cross-platform support. It uses mmap to manage model weights and introduces piped-ring parallelism with prefetching to hide disk loading. By modeling heterogeneity in computation, communication, disk, memory (and its management behavior), and OS, it optimally assigns model layers to each device's CPU and GPU, further reducing token latency. An elegant algorithm named Halda is proposed to solve this NP-hard assignment problem. We evaluate prima.cpp on a common four-node home cluster. It outperforms llama.cpp, exo, and dllama on 30B+ models while keeping memory pressure below 6%. This brings frontier 30B-70B models, such as Llama 3, DeepSeek R1, Qwen 2.5, and QwQ to home assistants, making advanced AI truly accessible to individuals. The code is open source and available at https://github.com/Lizonghang/prima.cpp.
Cautious Next Token Prediction
Next token prediction paradigm has been prevailing for autoregressive models in the era of LLMs. The current default sampling choice for popular LLMs is temperature scaling together with nucleus sampling to balance diversity and coherence. Nevertheless, such approach leads to inferior performance in various NLP tasks when the model is not certain about testing questions. To this end, we propose a brand new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP). In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation. Then we select the trial with the lowest perplexity score viewed as the most probable and reliable trial path given the model's capacity. The trial number is negatively correlated with the prediction confidence, i.e., the less confident the model is, the more trials it should sample. This is consistent with human beings' behaviour: when feeling uncertain or unconfident, one tends to think more creatively, exploring multiple thinking paths, to cautiously select the path one feels most confident about. Extensive experiments on both LLMs and MLLMs show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin. Moreover, the integration of CNTP with self consistency can further improve over vanilla self consistency. We believe our proposed CNTP has the potential to become one of the default choices for LLM decoding. Code is available at https://github.com/wyzjack/CNTP.
Deep Learning Applied to Image and Text Matching
The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.
Pangu Ultra: Pushing the Limits of Dense Large Language Models on Ascend NPUs
We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
R2R: Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing
Large Language Models (LLMs) achieve impressive reasoning capabilities at the cost of substantial inference overhead, posing substantial deployment challenges. Although distilled Small Language Models (SLMs) significantly enhance efficiency, their performance suffers as they fail to follow LLMs' reasoning paths. Luckily, we reveal that only a small fraction of tokens genuinely diverge reasoning paths between LLMs and SLMs. Most generated tokens are either identical or exhibit neutral differences, such as minor variations in abbreviations or expressions. Leveraging this insight, we introduce **Roads to Rome (R2R)**, a neural token routing method that selectively utilizes LLMs only for these critical, path-divergent tokens, while leaving the majority of token generation to the SLM. We also develop an automatic data generation pipeline that identifies divergent tokens and generates token-level routing labels to train the lightweight router. We apply R2R to combine R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challenging math, coding, and QA benchmarks. With an average activated parameter size of 5.6B, R2R surpasses the average accuracy of R1-7B by 1.6x, outperforming even the R1-14B model. Compared to R1-32B, it delivers a 2.8x wall-clock speedup with comparable performance, advancing the Pareto frontier of test-time scaling efficiency. Our code is available at https://github.com/thu-nics/R2R.
Not All Thoughts are Generated Equal: Efficient LLM Reasoning via Multi-Turn Reinforcement Learning
Compressing long chain-of-thought (CoT) from large language models (LLMs) is an emerging strategy to improve the reasoning efficiency of LLMs. Despite its promising benefits, existing studies equally compress all thoughts within a long CoT, hindering more concise and effective reasoning. To this end, we first investigate the importance of different thoughts by examining their effectiveness and efficiency in contributing to reasoning through automatic long CoT chunking and Monte Carlo rollouts. Building upon the insights, we propose a theoretically bounded metric to jointly measure the effectiveness and efficiency of different thoughts. We then propose LongotimesShort, an efficient reasoning framework that enables two LLMs to collaboratively solve the problem: a long-thought LLM for more effectively generating important thoughts, while a short-thought LLM for efficiently generating remaining thoughts. Specifically, we begin by synthesizing a small amount of cold-start data to fine-tune LLMs for long-thought and short-thought reasoning styles, respectively. Furthermore, we propose a synergizing-oriented multi-turn reinforcement learning, focusing on the model self-evolution and collaboration between long-thought and short-thought LLMs. Experimental results show that our method enables Qwen2.5-7B and Llama3.1-8B to achieve comparable performance compared to DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B, while reducing token length by over 80% across the MATH500, AIME24/25, AMC23, and GPQA Diamond benchmarks. Our data and code are available at https://github.com/yasNing/Long-otimes-Short/.
Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM
Recent advancements in code large language models (LLMs) have demonstrated remarkable capabilities in code generation and understanding. It is still challenging to build a code LLM with comprehensive performance yet ultimate efficiency. Many attempts have been released in the open source community to break the trade-off between performance and efficiency, such as the Qwen Coder series and the DeepSeek Coder series. This paper introduces yet another attempt in this area, namely Ling-Coder-Lite. We leverage the efficient Mixture-of-Experts (MoE) architecture along with a set of high-quality data curation methods (especially those based on program analytics) to build an efficient yet powerful code LLM. Ling-Coder-Lite exhibits on-par performance on 12 representative coding benchmarks compared to state-of-the-art models of similar size, such as Qwen2.5-Coder-7B and DeepSeek-Coder-V2-Lite, while offering competitive latency and throughput. In practice, we achieve a 50\% reduction in deployment resources compared to the similar-sized dense model without performance loss. To facilitate further research and development in this area, we open-source our models as well as a substantial portion of high-quality data for the annealing and post-training stages. The models and data can be accessed at~https://huggingface.co/inclusionAI/Ling-Coder-lite.
Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning
Recent advances in model distillation demonstrate that data from advanced reasoning models (e.g., DeepSeek-R1, OpenAI's o1) can effectively transfer complex reasoning abilities to smaller, efficient student models. However, standard practices employ rejection sampling, discarding incorrect reasoning examples -- valuable, yet often underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? To this end, We propose Reinforcement Distillation (REDI), a two-stage framework. Stage 1 learns from positive traces via Supervised Fine-Tuning (SFT). Stage 2 further refines the model using both positive and negative traces through our proposed REDI objective. This novel objective is a simple, reference-free loss function that outperforms established methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate REDI's superiority over baseline Rejection Sampling SFT or SFT combined with DPO/SimPO on mathematical reasoning tasks. Notably, the Qwen-REDI-1.5B model, post-trained on just 131k positive and negative examples from the open Open-R1 dataset, achieves an 83.1% score on MATH-500 (pass@1). Its performance matches or surpasses that of DeepSeek-R1-Distill-Qwen-1.5B (a model post-trained on 800k proprietary data) across various mathematical reasoning benchmarks, establishing a new state-of-the-art for 1.5B models post-trained offline with openly available data.
Give Me FP32 or Give Me Death? Challenges and Solutions for Reproducible Reasoning
Large Language Models (LLMs) are now integral across various domains and have demonstrated impressive performance. Progress, however, rests on the premise that benchmark scores are both accurate and reproducible. We demonstrate that the reproducibility of LLM performance is fragile: changing system configuration such as evaluation batch size, GPU count, and GPU version can introduce significant difference in the generated responses. This issue is especially pronounced in reasoning models, where minor rounding differences in early tokens can cascade into divergent chains of thought, ultimately affecting accuracy. For instance, under bfloat16 precision with greedy decoding, a reasoning model like DeepSeek-R1-Distill-Qwen-7B can exhibit up to 9% variation in accuracy and 9,000 tokens difference in response length due to differences in GPU count, type, and evaluation batch size. We trace the root cause of this variability to the non-associative nature of floating-point arithmetic under limited numerical precision. This work presents the first systematic investigation into how numerical precision affects reproducibility in LLM inference. Through carefully controlled experiments across various hardware, software, and precision settings, we quantify when and how model outputs diverge. Our analysis reveals that floating-point precision -- while critical for reproducibility -- is often neglected in evaluation practices. Inspired by this, we develop a lightweight inference pipeline, dubbed LayerCast, that stores weights in 16-bit precision but performs all computations in FP32, balancing memory efficiency with numerical stability. Code is available at https://github.com/nanomaoli/llm_reproducibility.
TD3Net: A Temporal Densely Connected Multi-Dilated Convolutional Network for Lipreading
The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository: https://github.com/Leebh-kor/TD3Net-A-Temporal-Densely-Connected-Multi-dilated-Convolutional-Network-for-Lipreading
CLaSp: In-Context Layer Skip for Self-Speculative Decoding
Speculative decoding (SD) is a promising method for accelerating the decoding process of Large Language Models (LLMs). The efficiency of SD primarily hinges on the consistency between the draft model and the verify model. However, existing drafting approaches typically require additional modules to be trained, which can be challenging to implement and ensure compatibility across various LLMs. In this paper, we propose CLaSp, an in-context layer-skipping strategy for self-speculative decoding. Unlike prior methods, CLaSp does not require additional drafting modules or extra training. Instead, it employs a plug-and-play mechanism by skipping intermediate layers of the verify model to construct a compressed draft model. Specifically, we develop a dynamic programming algorithm that optimizes the layer-skipping process by leveraging the complete hidden states from the last verification stage as an objective. This enables CLaSp to dynamically adjust its layer-skipping strategy after each verification stage, without relying on pre-optimized sets of skipped layers. Experimental results across diverse downstream tasks demonstrate that CLaSp achieves a speedup of 1.3x ~ 1.7x on LLaMA3 series models without altering the original distribution of the generated text.
A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training
Mixture-of-Experts (MoE) is a neural network architecture that adds sparsely activated expert blocks to a base model, increasing the number of parameters without impacting computational costs. However, current distributed deep learning frameworks are limited in their ability to train high-quality MoE models with large base models. In this work, we present DeepSpeed-TED, a novel, three-dimensional, hybrid parallel algorithm that combines data, tensor, and expert parallelism to enable the training of MoE models with 4 to 8x larger base models than the current state-of-the-art. We also describe memory optimizations in the optimizer step, and communication optimizations that eliminate unnecessary data movement. We implement our approach in DeepSpeed and achieve speedups of 26% over a baseline (i.e. without our communication optimizations) when training a 40 billion parameter MoE model (6.7 billion base model with 16 experts) on 128 V100 GPUs.
Very Deep Convolutional Networks for Large-Scale Image Recognition
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time
We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.
S2D: Sorted Speculative Decoding For More Efficient Deployment of Nested Large Language Models
Deployment of autoregressive large language models (LLMs) is costly, and as these models increase in size, the associated costs will become even more considerable. Consequently, different methods have been proposed to accelerate the token generation process and reduce costs. Speculative decoding (SD) is among the most promising approaches to speed up the LLM decoding process by verifying multiple tokens in parallel and using an auxiliary smaller draft model to generate the possible tokens. In SD, usually, one draft model is used to serve a specific target model; however, in practice, LLMs are diverse, and we might need to deal with many target models or more than one target model simultaneously. In this scenario, it is not clear which draft model should be used for which target model, and searching among different draft models or training customized draft models can further increase deployment costs. In this paper, we first introduce a novel multi-target scenario for the deployment of draft models for faster inference. Then, we present a novel, more efficient sorted speculative decoding mechanism that outperforms regular baselines in multi-target settings. We evaluated our method on Spec-Bench in different settings, including base models such as Vicuna 7B, 13B, and LLama Chat 70B. Our results suggest that our draft models perform better than baselines for multiple target models at the same time.
Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models
Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision Omega and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision Omega = 0.28 at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model
BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs
Large language models excel in general tasks, yet assessing their reliability in logic-heavy, precision-critical domains like finance, law, and healthcare remains challenging. To address this, we introduce BizFinBench, the first benchmark specifically designed to evaluate LLMs in real-world financial applications. BizFinBench consists of 6,781 well-annotated queries in Chinese, spanning five dimensions: numerical calculation, reasoning, information extraction, prediction recognition, and knowledge-based question answering, grouped into nine fine-grained categories. The benchmark includes both objective and subjective metrics. We also introduce IteraJudge, a novel LLM evaluation method that reduces bias when LLMs serve as evaluators in objective metrics. We benchmark 25 models, including both proprietary and open-source systems. Extensive experiments show that no model dominates across all tasks. Our evaluation reveals distinct capability patterns: (1) In Numerical Calculation, Claude-3.5-Sonnet (63.18) and DeepSeek-R1 (64.04) lead, while smaller models like Qwen2.5-VL-3B (15.92) lag significantly; (2) In Reasoning, proprietary models dominate (ChatGPT-o3: 83.58, Gemini-2.0-Flash: 81.15), with open-source models trailing by up to 19.49 points; (3) In Information Extraction, the performance spread is the largest, with DeepSeek-R1 scoring 71.46, while Qwen3-1.7B scores 11.23; (4) In Prediction Recognition, performance variance is minimal, with top models scoring between 39.16 and 50.00. We find that while current LLMs handle routine finance queries competently, they struggle with complex scenarios requiring cross-concept reasoning. BizFinBench offers a rigorous, business-aligned benchmark for future research. The code and dataset are available at https://github.com/HiThink-Research/BizFinBench.
BigMac: A Communication-Efficient Mixture-of-Experts Model Structure for Fast Training and Inference
The Mixture-of-Experts (MoE) structure scales the Transformer-based large language models (LLMs) and improves their performance with only the sub-linear increase in computation resources. Recently, a fine-grained DeepSeekMoE structure is proposed, which can further improve the computing efficiency of MoE without performance degradation. However, the All-to-All communication introduced by MoE has become a bottleneck, especially for the fine-grained structure, which typically involves and activates more experts, hence contributing to heavier communication overhead. In this paper, we propose a novel MoE structure named BigMac, which is also fine-grained but with high communication efficiency. The innovation of BigMac is mainly due to that we abandon the communicate-descend-ascend-communicate (CDAC) manner used by fine-grained MoE, which leads to the All-to-All communication always taking place at the highest dimension. Instead, BigMac designs an efficient descend-communicate-communicate-ascend (DCCA) manner. Specifically, we add a descending and ascending projection at the entrance and exit of the expert, respectively, which enables the communication to perform at a very low dimension. Furthermore, to adapt to DCCA, we re-design the structure of small experts, ensuring that the expert in BigMac has enough complexity to address tokens. Experimental results show that BigMac achieves comparable or even better model quality than fine-grained MoEs with the same number of experts and a similar number of total parameters. Equally importantly, BigMac reduces the end-to-end latency by up to 3.09times for training and increases the throughput by up to 3.11times for inference on state-of-the-art AI computing frameworks including Megatron, Tutel, and DeepSpeed-Inference.
UloRL:An Ultra-Long Output Reinforcement Learning Approach for Advancing Large Language Models' Reasoning Abilities
Recent advances in large language models (LLMs) have highlighted the potential of reinforcement learning with verifiable rewards (RLVR) to enhance reasoning capabilities through extended output sequences. However, traditional RL frameworks face inefficiencies when handling ultra-long outputs due to long-tail sequence distributions and entropy collapse during training. To address these challenges, we propose an Ultra-Long Output Reinforcement Learning (UloRL) approach for advancing large language models' reasoning abilities. Specifically, we divide ultra long output decoding into short segments, enabling efficient training by mitigating delays caused by long-tail samples. Additionally, we introduce dynamic masking of well-Mastered Positive Tokens (MPTs) to prevent entropy collapse. Experimental results demonstrate the effectiveness of our approach. On the Qwen3-30B-A3B model, RL with segment rollout achieved 2.06x increase in training speed, while RL training with 128k-token outputs improves the model's performance on AIME2025 from 70.9\% to 85.1\% and on BeyondAIME from 50.7\% to 61.9\%, even surpassing Qwen3-235B-A22B with remarkable gains. These findings underscore the potential of our methods to advance the reasoning capabilities of LLMs with ultra-long sequence generation. We will release our code and model for further use by the community.
CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs
Large language models (LLMs) have shown great potential in code-related tasks, yet open-source models lag behind their closed-source counterparts. To bridge this performance gap, existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training. Motivated by the need for more effective and efficient training, we propose the Code Adaptive Compute-efficient Tuning (CodeACT) framework. CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data based on complexity and diversity, and the Dynamic Pack padding strategy to reduce computational resource usage by minimizing padding tokens during training. Experimental results demonstrate that CodeACT-DeepSeek-Coder-6.7B, fine-tuned on only 40% of the EVOL-Instruct data, achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%. These findings underscore CodeACT's ability to enhance the performance and efficiency of open-source models. By optimizing both the data selection and training processes, CodeACT offers a comprehensive approach to improving the capabilities of open-source LLMs while significantly reducing computational requirements, addressing the dual challenges of data quality and training efficiency, and paving the way for more resource-efficient and performant models.
HAPO: Training Language Models to Reason Concisely via History-Aware Policy Optimization
While scaling the length of responses at test-time has been shown to markedly improve the reasoning abilities and performance of large language models (LLMs), it often results in verbose outputs and increases inference cost. Prior approaches for efficient test-time scaling, typically using universal budget constraints or query-level length optimization, do not leverage historical information from previous encounters with the same problem during training. We hypothesize that this limits their ability to progressively make solutions more concise over time. To address this, we present History-Aware Policy Optimization (HAPO), which keeps track of a history state (e.g., the minimum length over previously generated correct responses) for each problem. HAPO employs a novel length reward function based on this history state to incentivize the discovery of correct solutions that are more concise than those previously found. Crucially, this reward structure avoids overly penalizing shorter incorrect responses with the goal of facilitating exploration towards more efficient solutions. By combining this length reward with a correctness reward, HAPO jointly optimizes for correctness and efficiency. We use HAPO to train DeepSeek-R1-Distill-Qwen-1.5B, DeepScaleR-1.5B-Preview, and Qwen-2.5-1.5B-Instruct, and evaluate HAPO on several math benchmarks that span various difficulty levels. Experiment results demonstrate that HAPO effectively induces LLMs' concise reasoning abilities, producing length reductions of 33-59% with accuracy drops of only 2-5%.
LiRank: Industrial Large Scale Ranking Models at LinkedIn
We present LiRank, a large-scale ranking framework at LinkedIn that brings to production state-of-the-art modeling architectures and optimization methods. We unveil several modeling improvements, including Residual DCN, which adds attention and residual connections to the famous DCNv2 architecture. We share insights into combining and tuning SOTA architectures to create a unified model, including Dense Gating, Transformers and Residual DCN. We also propose novel techniques for calibration and describe how we productionalized deep learning based explore/exploit methods. To enable effective, production-grade serving of large ranking models, we detail how to train and compress models using quantization and vocabulary compression. We provide details about the deployment setup for large-scale use cases of Feed ranking, Jobs Recommendations, and Ads click-through rate (CTR) prediction. We summarize our learnings from various A/B tests by elucidating the most effective technical approaches. These ideas have contributed to relative metrics improvements across the board at LinkedIn: +0.5% member sessions in the Feed, +1.76% qualified job applications for Jobs search and recommendations, and +4.3% for Ads CTR. We hope this work can provide practical insights and solutions for practitioners interested in leveraging large-scale deep ranking systems.
LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding
We present LayerSkip, an end-to-end solution to speed-up inference of large language models (LLMs). First, during training we apply layer dropout, with low dropout rates for earlier layers and higher dropout rates for later layers, and an early exit loss where all transformer layers share the same exit. Second, during inference, we show that this training recipe increases the accuracy of early exit at earlier layers, without adding any auxiliary layers or modules to the model. Third, we present a novel self-speculative decoding solution where we exit at early layers and verify and correct with remaining layers of the model. Our proposed self-speculative decoding approach has less memory footprint than other speculative decoding approaches and benefits from shared compute and activations of the draft and verification stages. We run experiments on different Llama model sizes on different types of training: pretraining from scratch, continual pretraining, finetuning on specific data domain, and finetuning on specific task. We implement our inference solution and show speedups of up to 2.16x on summarization for CNN/DM documents, 1.82x on coding, and 2.0x on TOPv2 semantic parsing task. We open source our code and checkpoints at https://github.com/facebookresearch/LayerSkip.
The Tenth NTIRE 2025 Efficient Super-Resolution Challenge Report
This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR). The challenge aimed to advance the development of deep models that optimize key computational metrics, i.e., runtime, parameters, and FLOPs, while achieving a PSNR of at least 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. A robust participation saw 244 registered entrants, with 43 teams submitting valid entries. This report meticulously analyzes these methods and results, emphasizing groundbreaking advancements in state-of-the-art single-image ESR techniques. The analysis highlights innovative approaches and establishes benchmarks for future research in the field.
LLM Modules: Knowledge Transfer from a Large to a Small Model using Enhanced Cross-Attention
In this work, we propose an architecture of LLM Modules that enables the transfer of knowledge from a large pre-trained model to a smaller model using an Enhanced Cross-Attention mechanism. In the proposed scheme, the Qwen2-1.5B model is frozen and its representations are passed through specially designed attention layers to the GPT-Neo-125M model, which is trained on limited computational resources. Experimental results on the Bespoke-Stratos-17k dataset demonstrate that after 15 epochs of training, the combined model generates responses comparable in quality to those obtained by distillation. We discuss the advantages of the modular approach, provide examples of input queries and comparative analysis, and outline prospects for further extension of the method.
DeepAqua: Self-Supervised Semantic Segmentation of Wetlands from SAR Images using Knowledge Distillation
Remote sensing has significantly advanced water detection by applying semantic segmentation techniques to satellite imagery. However, semantic segmentation remains challenging due to the substantial amount of annotated data required. This is particularly problematic in wetland detection, where water extent varies over time and space, necessitating multiple annotations for the same area. In this paper, we present DeepAqua, a self-supervised deep learning model that leverages knowledge distillation to eliminate the need for manual annotations during the training phase. DeepAqua utilizes the Normalized Difference Water Index (NDWI) as a teacher model to train a Convolutional Neural Network (CNN) for segmenting water from Synthetic Aperture Radar (SAR) images. To train the student model, we exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces. Our model represents a significant advancement in computer vision techniques by effectively training semantic segmentation models without any manually annotated data. This approach offers a practical solution for monitoring wetland water extent changes without needing ground truth data, making it highly adaptable and scalable for wetland conservation efforts.
Position-Aware Depth Decay Decoding (D^3): Boosting Large Language Model Inference Efficiency
Due to the large number of parameters, the inference phase of Large Language Models (LLMs) is resource-intensive. Unlike traditional model compression, which needs retraining, recent dynamic computation methods show that not all components are required for inference, enabling a training-free pipeline. In this paper, we focus on the dynamic depth of LLM generation. A token-position aware layer skipping framework is proposed to save 1.5x times operations efficiently while maintaining performance. We first observed that tokens predicted later have lower perplexity and thus require less computation. Then, we propose a training-free algorithm called Position-Aware Depth Decay Decoding (D^3), which leverages a power-law decay function, leftlfloor L times (alpha^i) rightrfloor, to determine the number of layers to retain when generating token T_i. Remarkably, without any retraining, the D^3 achieves success across a wide range of generation tasks for the first time. Experiments on large language models (\ie the Llama) with 7 sim 70 billion parameters show that D^3 can achieve an average 1.5x speedup compared with the full-inference pipeline while maintaining comparable performance with nearly no performance drop (<1%) on the GSM8K and BBH benchmarks.
An Inverse Scaling Law for CLIP Training
CLIP, the first foundation model that connects images and text, has enabled many recent breakthroughs in computer vision. However, its associated training cost is prohibitively high, imposing a significant barrier to its widespread exploration. In this paper, we present a surprising finding that there exists an inverse scaling law for CLIP training, whereby the larger the image/text encoders used, the shorter the sequence length of image/text tokens that can be applied in training. Moreover, we showcase that the strategy for reducing image/text token length plays a crucial role in determining the quality of this scaling law. As a result of this finding, we are able to successfully train CLIP even by using academic resources. For example, on an A100 eight-GPU server, our CLIP models achieve zero-shot top-1 ImageNet accuracies of 63.2% in ~2 days, 67.8% in ~3 days, and 69.3% in ~4 days. By reducing the computation barrier associated with CLIP, we hope to inspire more research in this field, particularly from academics. Our code is available at https://github.com/UCSC-VLAA/CLIPA.
Do Language Models Use Their Depth Efficiently?
Modern LLMs are increasingly deep, and depth correlates with performance, albeit with diminishing returns. However, do these models use their depth efficiently? Do they compose more features to create higher-order computations that are impossible in shallow models, or do they merely spread the same kinds of computation out over more layers? To address these questions, we analyze the residual stream of the Llama 3.1 and Qwen 3 family of models. We find: First, comparing the output of the sublayers to the residual stream reveals that layers in the second half contribute much less than those in the first half, with a clear phase transition between the two halves. Second, skipping layers in the second half has a much smaller effect on future computations and output predictions. Third, for multihop tasks, we are unable to find evidence that models are using increased depth to compose subresults in examples involving many hops. Fourth, we seek to directly address whether deeper models are using their additional layers to perform new kinds of computation. To do this, we train linear maps from the residual stream of a shallow model to a deeper one. We find that layers with the same relative depth map best to each other, suggesting that the larger model simply spreads the same computations out over its many layers. All this evidence suggests that deeper models are not using their depth to learn new kinds of computation, but only using the greater depth to perform more fine-grained adjustments to the residual. This may help explain why increasing scale leads to diminishing returns for stacked Transformer architectures.
Let the Code LLM Edit Itself When You Edit the Code
In this work, we investigate a typical scenario in code generation where a developer edits existing code in real time and requests a code assistant, e.g., a large language model, to re-predict the next token or next line on the fly. Naively, the LLM needs to re-encode the entire KV cache to provide an accurate prediction. However, this process is computationally expensive, especially when the sequence length is long. Simply encoding the edited subsequence and integrating it to the original KV cache meets the temporal confusion problem, leading to significantly worse performance. We address this efficiency and accuracy trade-off by introducing \textbf{Positional \textbf{Integrity Encoding} (PIE). Building upon the rotary positional encoding, PIE first removes the rotary matrices in the Key cache that introduce temporal confusion and then reapplies the correct rotary matrices. This process ensures that positional relationships between tokens are correct and requires only a single round of matrix multiplication. We validate the effectiveness of PIE through extensive experiments on the RepoBench-C-8k dataset, utilizing DeepSeek-Coder models with 1.3B, 6.7B, and 33B parameters. Our evaluation includes three real-world coding tasks: code insertion, code deletion, and multi-place code editing. Results demonstrate that PIE reduces computational overhead by over 85% compared to the standard full recomputation approach across all model sizes and tasks while well approximating the model performance.
Guiding Image Captioning Models Toward More Specific Captions
Image captioning is conventionally formulated as the task of generating captions for images that match the distribution of reference image-caption pairs. However, reference captions in standard captioning datasets are short and may not uniquely identify the images they describe. These problems are further exacerbated when models are trained directly on image-alt text pairs collected from the internet. In this work, we show that it is possible to generate more specific captions with minimal changes to the training process. We implement classifier-free guidance for an autoregressive captioning model by fine-tuning it to estimate both conditional and unconditional distributions over captions. The guidance scale applied at decoding controls a trade-off between maximizing p(caption|image) and p(image|caption). Compared to standard greedy decoding, decoding with a guidance scale of 2 substantially improves reference-free metrics such as CLIPScore (0.808 vs. 0.775) and captiontoimage retrieval performance in the CLIP embedding space (recall@1 44.6% vs. 26.5%), but worsens standard reference-based captioning metrics (e.g., CIDEr 78.6 vs 126.1). We further explore the use of language models to guide the decoding process, obtaining small improvements over the Pareto frontier of reference-free vs. reference-based captioning metrics that arises from classifier-free guidance, and substantially improving the quality of captions generated from a model trained only on minimally curated web data.
InceptionNeXt: When Inception Meets ConvNeXt
Inspired by the long-range modeling ability of ViTs, large-kernel convolutions are widely studied and adopted recently to enlarge the receptive field and improve model performance, like the remarkable work ConvNeXt which employs 7x7 depthwise convolution. Although such depthwise operator only consumes a few FLOPs, it largely harms the model efficiency on powerful computing devices due to the high memory access costs. For example, ConvNeXt-T has similar FLOPs with ResNet-50 but only achieves 60% throughputs when trained on A100 GPUs with full precision. Although reducing the kernel size of ConvNeXt can improve speed, it results in significant performance degradation. It is still unclear how to speed up large-kernel-based CNN models while preserving their performance. To tackle this issue, inspired by Inceptions, we propose to decompose large-kernel depthwise convolution into four parallel branches along channel dimension, i.e. small square kernel, two orthogonal band kernels, and an identity mapping. With this new Inception depthwise convolution, we build a series of networks, namely IncepitonNeXt, which not only enjoy high throughputs but also maintain competitive performance. For instance, InceptionNeXt-T achieves 1.6x higher training throughputs than ConvNeX-T, as well as attains 0.2% top-1 accuracy improvement on ImageNet-1K. We anticipate InceptionNeXt can serve as an economical baseline for future architecture design to reduce carbon footprint. Code is available at https://github.com/sail-sg/inceptionnext.
Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.
RecursiveDet: End-to-End Region-based Recursive Object Detection
End-to-end region-based object detectors like Sparse R-CNN usually have multiple cascade bounding box decoding stages, which refine the current predictions according to their previous results. Model parameters within each stage are independent, evolving a huge cost. In this paper, we find the general setting of decoding stages is actually redundant. By simply sharing parameters and making a recursive decoder, the detector already obtains a significant improvement. The recursive decoder can be further enhanced by positional encoding (PE) of the proposal box, which makes it aware of the exact locations and sizes of input bounding boxes, thus becoming adaptive to proposals from different stages during the recursion. Moreover, we also design centerness-based PE to distinguish the RoI feature element and dynamic convolution kernels at different positions within the bounding box. To validate the effectiveness of the proposed method, we conduct intensive ablations and build the full model on three recent mainstream region-based detectors. The RecusiveDet is able to achieve obvious performance boosts with even fewer model parameters and slightly increased computation cost. Codes are available at https://github.com/bravezzzzzz/RecursiveDet.
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
With the success of language pretraining, it is highly desirable to develop more efficient architectures of good scalability that can exploit the abundant unlabeled data at a lower cost. To improve the efficiency, we examine the much-overlooked redundancy in maintaining a full-length token-level presentation, especially for tasks that only require a single-vector presentation of the sequence. With this intuition, we propose Funnel-Transformer which gradually compresses the sequence of hidden states to a shorter one and hence reduces the computation cost. More importantly, by re-investing the saved FLOPs from length reduction in constructing a deeper or wider model, we further improve the model capacity. In addition, to perform token-level predictions as required by common pretraining objectives, Funnel-Transformer is able to recover a deep representation for each token from the reduced hidden sequence via a decoder. Empirically, with comparable or fewer FLOPs, Funnel-Transformer outperforms the standard Transformer on a wide variety of sequence-level prediction tasks, including text classification, language understanding, and reading comprehension. The code and pretrained checkpoints are available at https://github.com/laiguokun/Funnel-Transformer.
RETURNN as a Generic Flexible Neural Toolkit with Application to Translation and Speech Recognition
We compare the fast training and decoding speed of RETURNN of attention models for translation, due to fast CUDA LSTM kernels, and a fast pure TensorFlow beam search decoder. We show that a layer-wise pretraining scheme for recurrent attention models gives over 1% BLEU improvement absolute and it allows to train deeper recurrent encoder networks. Promising preliminary results on max. expected BLEU training are presented. We are able to train state-of-the-art models for translation and end-to-end models for speech recognition and show results on WMT 2017 and Switchboard. The flexibility of RETURNN allows a fast research feedback loop to experiment with alternative architectures, and its generality allows to use it on a wide range of applications.
Striped Attention: Faster Ring Attention for Causal Transformers
To help address the growing demand for ever-longer sequence lengths in transformer models, Liu et al. recently proposed Ring Attention, an exact attention algorithm capable of overcoming per-device memory bottle- necks by distributing self-attention across multiple devices. In this paper, we study the performance characteristics of Ring Attention in the important special case of causal transformer models, and identify a key workload imbal- ance due to triangular structure of causal attention computations. We propose a simple extension to Ring Attention, which we call Striped Attention to fix this imbalance. Instead of devices having contiguous subsequences, each device has a subset of tokens distributed uniformly throughout the sequence, which we demonstrate leads to more even workloads. In experiments running Striped Attention on A100 GPUs and TPUv4s, we are able to achieve up to 1.45x end-to-end throughput improvements over the original Ring Attention algorithm on causal transformer training at a sequence length of 256k. Furthermore, on 16 TPUv4 chips, we were able to achieve 1.65x speedups at sequence lengths of 786k. We release the code for our experiments as open source
A Unified Sequence Parallelism Approach for Long Context Generative AI
Sequence parallelism (SP), which divides the sequence dimension of input tensors across multiple computational devices, is becoming key to unlocking the long-context capabilities of generative AI models. This paper investigates the state-of-the-art SP approaches, i.e. DeepSpeed-Ulysses and Ring-Attention, and proposes a unified SP approach, which is more robust to transformer model architectures and network hardware topology. This paper compares the communication and memory cost of SP and existing parallelism, including data/tensor/zero/expert/pipeline parallelism, and discusses the best practices for designing hybrid 4D parallelism involving SP. We achieved 86% MFU on two 8xA800 nodes using SP for sequence length 208K for the LLAMA3-8B model. Our code is publicly available on https://github.com/feifeibear/long-context-attention.
MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention
We introduce MiniMax-M1, the world's first open-weight, large-scale hybrid-attention reasoning model. MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism. The model is developed based on our previous MiniMax-Text-01 model, which contains a total of 456 billion parameters with 45.9 billion parameters activated per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute. These properties make M1 particularly suitable for complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using large-scale reinforcement learning (RL) on diverse problems including sandbox-based, real-world software engineering environments. In addition to M1's inherent efficiency advantage for RL training, we propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just $534,700. We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training. Experiments on standard benchmarks show that our models are comparable or superior to strong open-weight models such as the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering, tool utilization, and long-context tasks. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.
PITCH: AI-assisted Tagging of Deepfake Audio Calls using Challenge-Response
The rise of AI voice-cloning technology, particularly audio Real-time Deepfakes (RTDFs), has intensified social engineering attacks by enabling real-time voice impersonation that bypasses conventional enrollment-based authentication. To address this, we propose PITCH, a robust challenge-response method to detect and tag interactive deepfake audio calls. We developed a comprehensive taxonomy of audio challenges based on the human auditory system, linguistics, and environmental factors, yielding 20 prospective challenges. These were tested against leading voice-cloning systems using a novel dataset comprising 18,600 original and 1.6 million deepfake samples from 100 users. PITCH's prospective challenges enhanced machine detection capabilities to 88.7% AUROC score on the full unbalanced dataset, enabling us to shortlist 10 functional challenges that balance security and usability. For human evaluation and subsequent analyses, we filtered a challenging, balanced subset. On this subset, human evaluators independently scored 72.6% accuracy, while machines achieved 87.7%. Acknowledging that call environments require higher human control, we aided call receivers in making decisions with them using machines. Our solution uses an early warning system to tag suspicious incoming calls as "Deepfake-likely." Contrary to prior findings, we discovered that integrating human intuition with machine precision offers complementary advantages. Our solution gave users maximum control and boosted detection accuracy to 84.5%. Evidenced by this jump in accuracy, PITCH demonstrated the potential for AI-assisted pre-screening in call verification processes, offering an adaptable and usable approach to combat real-time voice-cloning attacks. Code to reproduce and access data at https://github.com/mittalgovind/PITCH-Deepfakes.
A Unified Cascaded Encoder ASR Model for Dynamic Model Sizes
In this paper, we propose a dynamic cascaded encoder Automatic Speech Recognition (ASR) model, which unifies models for different deployment scenarios. Moreover, the model can significantly reduce model size and power consumption without loss of quality. Namely, with the dynamic cascaded encoder model, we explore three techniques to maximally boost the performance of each model size: 1) Use separate decoders for each sub-model while sharing the encoders; 2) Use funnel-pooling to improve the encoder efficiency; 3) Balance the size of causal and non-causal encoders to improve quality and fit deployment constraints. Overall, the proposed large-medium model has 30% smaller size and reduces power consumption by 33%, compared to the baseline cascaded encoder model. The triple-size model that unifies the large, medium, and small models achieves 37% total size reduction with minimal quality loss, while substantially reducing the engineering efforts of having separate models.
Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting
Speculative decoding has demonstrated its effectiveness in accelerating the inference of large language models while maintaining a consistent sampling distribution. However, the conventional approach of training a separate draft model to achieve a satisfactory token acceptance rate can be costly. Drawing inspiration from early exiting, we propose a novel self-speculative decoding framework Kangaroo, which uses a fixed shallow sub-network as a self-draft model, with the remaining layers serving as the larger target model. We train a lightweight and efficient adapter module on top of the sub-network to bridge the gap between the sub-network and the full model's representation ability. It is noteworthy that the inference latency of the self-draft model may no longer be negligible compared to the large model, necessitating strategies to increase the token acceptance rate while minimizing the drafting steps of the small model. To address this challenge, we introduce an additional early exiting mechanism for generating draft tokens. Specifically, we halt the small model's subsequent prediction during the drafting phase once the confidence level for the current token falls below a certain threshold. Extensive experiments on the Spec-Bench demonstrate the effectiveness of Kangaroo. Under single-sequence verification, Kangaroo achieves speedups up to 1.68times on Spec-Bench, outperforming Medusa-1 with 88.7\% fewer additional parameters (67M compared to 591M). The code for Kangaroo is available at https://github.com/Equationliu/Kangaroo.
Wide Attention Is The Way Forward For Transformers?
The Transformer is an extremely powerful and prominent deep learning architecture. In this work, we challenge the commonly held belief in deep learning that going deeper is better, and show an alternative design approach that is building wider attention Transformers. We demonstrate that wide single layer Transformer models can compete with or outperform deeper ones in a variety of Natural Language Processing (NLP) tasks when both are trained from scratch. The impact of changing the model aspect ratio on Transformers is then studied systematically. This ratio balances the number of layers and the number of attention heads per layer while keeping the total number of attention heads and all other hyperparameters constant. On average, across 4 NLP tasks and 10 attention types, single layer wide models perform 0.3% better than their deep counterparts. We show an in-depth evaluation and demonstrate how wide models require a far smaller memory footprint and can run faster on commodity hardware, in addition, these wider models are also more interpretable. For example, a single layer Transformer on the IMDb byte level text classification has 3.1x faster inference latency on a CPU than its equally accurate deeper counterpart, and is half the size. We therefore put forward wider and shallower models as a viable and desirable alternative for small models on NLP tasks, and as an important area of research for domains beyond this.
BenthicNet: A global compilation of seafloor images for deep learning applications
Advances in underwater imaging enable the collection of extensive seafloor image datasets that are necessary for monitoring important benthic ecosystems. The ability to collect seafloor imagery has outpaced our capacity to analyze it, hindering expedient mobilization of this crucial environmental information. Recent machine learning approaches provide opportunities to increase the efficiency with which seafloor image datasets are analyzed, yet large and consistent datasets necessary to support development of such approaches are scarce. Here we present BenthicNet: a global compilation of seafloor imagery designed to support the training and evaluation of large-scale image recognition models. An initial set of over 11.4 million images was collected and curated to represent a diversity of seafloor environments using a representative subset of 1.3 million images. These are accompanied by 2.6 million annotations translated to the CATAMI scheme, which span 190,000 of the images. A large deep learning model was trained on this compilation and preliminary results suggest it has utility for automating large and small-scale image analysis tasks. The compilation and model are made openly available for use by the scientific community at https://doi.org/10.20383/103.0614.
Deeply Supervised Flow-Based Generative Models
Flow based generative models have charted an impressive path across multiple visual generation tasks by adhering to a simple principle: learning velocity representations of a linear interpolant. However, we observe that training velocity solely from the final layer output underutilizes the rich inter layer representations, potentially impeding model convergence. To address this limitation, we introduce DeepFlow, a novel framework that enhances velocity representation through inter layer communication. DeepFlow partitions transformer layers into balanced branches with deep supervision and inserts a lightweight Velocity Refiner with Acceleration (VeRA) block between adjacent branches, which aligns the intermediate velocity features within transformer blocks. Powered by the improved deep supervision via the internal velocity alignment, DeepFlow converges 8 times faster on ImageNet with equivalent performance and further reduces FID by 2.6 while halving training time compared to previous flow based models without a classifier free guidance. DeepFlow also outperforms baselines in text to image generation tasks, as evidenced by evaluations on MSCOCO and zero shot GenEval.
SpecExtend: A Drop-in Enhancement for Speculative Decoding of Long Sequences
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), but its performance degrades on long inputs due to increased attention cost and reduced draft accuracy. We introduce SpecExtend, a drop-in enhancement that improves the performance of speculative decoding on long sequences without any additional training. SpecExtend integrates efficient attention mechanisms such as FlashAttention and Hybrid Tree Attention into both the draft and target models, reducing latency across all stages. To improve draft accuracy and speed, we propose Cross-model Retrieval, a novel KV cache update strategy that uses the target model's attention scores to dynamically select relevant context for the draft model. Extensive evaluations on three long-context understanding datasets show that SpecExtend accelerates standard tree-based speculative decoding by up to 2.22x for inputs up to 16K tokens, providing an effective solution for speculative decoding of long sequences. The code is available at https://github.com/jycha98/SpecExtend .
QwenLong-CPRS: Towards infty-LLMs with Dynamic Context Optimization
This technical report presents QwenLong-CPRS, a context compression framework designed for explicit long-context optimization, addressing prohibitive computation overhead during the prefill stage and the "lost in the middle" performance degradation of large language models (LLMs) during long sequence processing. Implemented through a novel dynamic context optimization mechanism, QwenLong-CPRS enables multi-granularity context compression guided by natural language instructions, achieving both efficiency gains and improved performance. Evolved from the Qwen architecture series, QwenLong-CPRS introduces four key innovations: (1) Natural language-guided dynamic optimization, (2) Bidirectional reasoning layers for enhanced boundary awareness, (3) Token critic mechanisms with language modeling heads, and (4) Window-parallel inference. Comprehensive evaluations across five benchmarks (4K-2M word contexts) demonstrate QwenLong-CPRS's threefold effectiveness: (1) Consistent superiority over other context management methods like RAG and sparse attention in both accuracy and efficiency. (2) Architecture-agnostic integration with all flagship LLMs, including GPT-4o, Gemini2.0-pro, Claude3.7-sonnet, DeepSeek-v3, and Qwen2.5-max, achieves 21.59times context compression alongside 19.15-point average performance gains; (3) Deployed with Qwen2.5-32B-Instruct, QwenLong-CPRS surpasses leading proprietary LLMs by 4.85 and 10.88 points on Ruler-128K and InfiniteBench, establishing new SOTA performance.
Attention Basin: Why Contextual Position Matters in Large Language Models
The performance of Large Language Models (LLMs) is significantly sensitive to the contextual position of information in the input. To investigate the mechanism behind this positional bias, our extensive experiments reveal a consistent phenomenon we term the attention basin: when presented with a sequence of structured items (e.g., retrieved documents or few-shot examples), models systematically assign higher attention to the items at the beginning and end of the sequence, while neglecting those in the middle. Crucially, our analysis further reveals that allocating higher attention to critical information is key to enhancing model performance. Based on these insights, we introduce Attention-Driven Reranking (AttnRank), a two-stage framework that (i) estimates a model's intrinsic positional attention preferences using a small calibration set, and (ii) reorders retrieved documents or few-shot examples to align the most salient content with these high-attention positions. AttnRank is a model-agnostic, training-free, and plug-and-play method with minimal computational overhead. Experiments on multi-hop QA and few-shot in-context learning tasks demonstrate that AttnRank achieves substantial improvements across 10 large language models of varying architectures and scales, without modifying model parameters or training procedures.
Phi-4-Mini-Reasoning: Exploring the Limits of Small Reasoning Language Models in Math
Chain-of-Thought (CoT) significantly enhances formal reasoning capabilities in Large Language Models (LLMs) by training them to explicitly generate intermediate reasoning steps. While LLMs readily benefit from such techniques, improving reasoning in Small Language Models (SLMs) remains challenging due to their limited model capacity. Recent work by Deepseek-R1 demonstrates that distillation from LLM-generated synthetic data can substantially improve the reasoning ability of SLM. However, the detailed modeling recipe is not disclosed. In this work, we present a systematic training recipe for SLMs that consists of four steps: (1) large-scale mid-training on diverse distilled long-CoT data, (2) supervised fine-tuning on high-quality long-CoT data, (3) Rollout DPO leveraging a carefully curated preference dataset, and (4) Reinforcement Learning (RL) with Verifiable Reward. We apply our method on Phi-4-Mini, a compact 3.8B-parameter model. The resulting Phi-4-Mini-Reasoning model exceeds, on math reasoning tasks, much larger reasoning models, e.g., outperforming DeepSeek-R1-Distill-Qwen-7B by 3.2 points and DeepSeek-R1-Distill-Llama-8B by 7.7 points on Math-500. Our results validate that a carefully designed training recipe, with large-scale high-quality CoT data, is effective to unlock strong reasoning capabilities even in resource-constrained small models.
Rank1: Test-Time Compute for Reranking in Information Retrieval
We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.
FastDraft: How to Train Your Draft
Speculative Decoding has gained popularity as an effective technique for accelerating the auto-regressive inference process of Large Language Models (LLMs). However, Speculative Decoding entirely relies on the availability of efficient draft models, which are often lacking for many existing language models due to a stringent constraint of vocabulary incompatibility. In this work we introduce FastDraft, a novel and efficient approach for pre-training and aligning a draft model to any large language model by incorporating efficient pre-training, followed by fine-tuning over synthetic datasets generated by the target model. We demonstrate FastDraft by training two highly parameter efficient drafts for the popular Phi-3-mini and Llama-3.1-8B models. Using FastDraft, we were able to produce a draft with approximately 10 billion tokens on a single server with 8 Intel^circledR Gaudi^circledR 2 accelerators in under 24 hours. Our results show that the draft model achieves impressive results in key metrics of acceptance rate, block efficiency and up to 3x memory bound speed up when evaluated on code completion and up to 2x in summarization, text completion and instruction tasks. We validate our theoretical findings through benchmarking on the latest Intel^circledR Core^{tiny TM} Ultra, achieving a wall-clock time speedup of up to 2x, indicating a significant reduction in runtime. Due to its high quality, FastDraft unlocks large language models inference on AI-PC and other edge-devices.
Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
Traditional transformer models often allocate a fixed amount of computational resources to every input token, leading to inefficient and unnecessary computation. To address this, the Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers. Despite its promise, current MoD approaches remain under-explored and face two main challenges: (1) high training costs due to the need to train the entire model along with the routers that determine which layers to skip, and (2) the risk of performance degradation when important layers are bypassed. In response to the first issue, we propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training. For the second challenge, we propose MindSkip, which deploys Attention with Dynamic Depths. This method preserves the model's performance while significantly enhancing computational and memory efficiency. Extensive experiments demonstrate that our approach delivers competitive results while dramatically improving the computation efficiency, e.g., 21\% speedup and only a 0.2\% performance drop. The code is released at https://github.com/CASE-Lab-UMD/Router-Tuning.
Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder
Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at https://github.com/microsoft/SEED-Encoder/.
FasterDiT: Towards Faster Diffusion Transformers Training without Architecture Modification
Diffusion Transformers (DiT) have attracted significant attention in research. However, they suffer from a slow convergence rate. In this paper, we aim to accelerate DiT training without any architectural modification. We identify the following issues in the training process: firstly, certain training strategies do not consistently perform well across different data. Secondly, the effectiveness of supervision at specific timesteps is limited. In response, we propose the following contributions: (1) We introduce a new perspective for interpreting the failure of the strategies. Specifically, we slightly extend the definition of Signal-to-Noise Ratio (SNR) and suggest observing the Probability Density Function (PDF) of SNR to understand the essence of the data robustness of the strategy. (2) We conduct numerous experiments and report over one hundred experimental results to empirically summarize a unified accelerating strategy from the perspective of PDF. (3) We develop a new supervision method that further accelerates the training process of DiT. Based on them, we propose FasterDiT, an exceedingly simple and practicable design strategy. With few lines of code modifications, it achieves 2.30 FID on ImageNet 256 resolution at 1000k iterations, which is comparable to DiT (2.27 FID) but 7 times faster in training.
Qwen2.5-1M Technical Report
We introduce Qwen2.5-1M, a series of models that extend the context length to 1 million tokens. Compared to the previous 128K version, the Qwen2.5-1M series have significantly enhanced long-context capabilities through long-context pre-training and post-training. Key techniques such as long data synthesis, progressive pre-training, and multi-stage supervised fine-tuning are employed to effectively enhance long-context performance while reducing training costs. To promote the use of long-context models among a broader user base, we present and open-source our inference framework. This framework includes a length extrapolation method that can expand the model context lengths by at least four times, or even more, without additional training. To reduce inference costs, we implement a sparse attention method along with chunked prefill optimization for deployment scenarios and a sparsity refinement method to improve precision. Additionally, we detail our optimizations in the inference engine, including kernel optimization, pipeline parallelism, and scheduling optimization, which significantly enhance overall inference performance. By leveraging our inference framework, the Qwen2.5-1M models achieve a remarkable 3x to 7x prefill speedup in scenarios with 1 million tokens of context. This framework provides an efficient and powerful solution for developing applications that require long-context processing using open-source models. The Qwen2.5-1M series currently includes the open-source models Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, as well as the API-accessed model Qwen2.5-Turbo. Evaluations show that Qwen2.5-1M models have been greatly improved in long-context tasks without compromising performance in short-context scenarios. Specifically, the Qwen2.5-14B-Instruct-1M model significantly outperforms GPT-4o-mini in long-context tasks and supports contexts eight times longer.
Parallel Speculative Decoding with Adaptive Draft Length
Speculative decoding (SD), where an extra draft model is employed to provide multiple draft tokens first and then the original target model verifies these tokens in parallel, has shown great power for LLM inference acceleration. However, existing SD methods suffer from the mutual waiting problem, i.e., the target model gets stuck when the draft model is guessing tokens, and vice versa. This problem is directly incurred by the asynchronous execution of the draft model and the target model, and is exacerbated due to the fixed draft length in speculative decoding. To address these challenges, we propose a conceptually simple, flexible, and general framework to boost speculative decoding, namely Parallel spEculative decoding with Adaptive dRaft Length (PEARL). Specifically, PEARL proposes pre-verify to verify the first draft token in advance during the drafting phase, and post-verify to generate more draft tokens during the verification phase. PEARL parallels the drafting phase and the verification phase via applying the two strategies, and achieves adaptive draft length for different scenarios, which effectively alleviates the mutual waiting problem. Moreover, we theoretically demonstrate that the mean accepted tokens of PEARL is more than existing draft-then-verify works. Experiments on various text generation benchmarks demonstrate the effectiveness of our \name, leading to a superior speedup performance up to 3.79times and 1.52times, compared to auto-regressive decoding and vanilla speculative decoding, respectively.
M1: Towards Scalable Test-Time Compute with Mamba Reasoning Models
Effective reasoning is crucial to solving complex mathematical problems. Recent large language models (LLMs) have boosted performance by scaling test-time computation through long chain-of-thought reasoning. However, transformer-based models are inherently limited in extending context length due to their quadratic computational complexity and linear memory requirements. In this paper, we introduce a novel hybrid linear RNN reasoning model, M1, built on the Mamba architecture, which allows memory-efficient inference. Our approach leverages a distillation process from existing reasoning models and is further enhanced through RL training. Experimental results on the AIME and MATH benchmarks show that M1 not only outperforms previous linear RNN models but also matches the performance of state-of-the-art Deepseek R1 distilled reasoning models at a similar scale. We also compare our generation speed with a highly performant general purpose inference engine, vLLM, and observe more than a 3x speedup compared to a same size transformer. With throughput speedup, we are able to achieve higher accuracy compared to DeepSeek R1 distilled transformer reasoning models under a fixed generation time budget using self-consistency voting. Overall, we introduce a hybrid Mamba reasoning model and provide a more effective approach to scaling test-time generation using self-consistency or long chain of thought reasoning.
AQUA20: A Benchmark Dataset for Underwater Species Classification under Challenging Conditions
Robust visual recognition in underwater environments remains a significant challenge due to complex distortions such as turbidity, low illumination, and occlusion, which severely degrade the performance of standard vision systems. This paper introduces AQUA20, a comprehensive benchmark dataset comprising 8,171 underwater images across 20 marine species reflecting real-world environmental challenges such as illumination, turbidity, occlusions, etc., providing a valuable resource for underwater visual understanding. Thirteen state-of-the-art deep learning models, including lightweight CNNs (SqueezeNet, MobileNetV2) and transformer-based architectures (ViT, ConvNeXt), were evaluated to benchmark their performance in classifying marine species under challenging conditions. Our experimental results show ConvNeXt achieving the best performance, with a Top-3 accuracy of 98.82% and a Top-1 accuracy of 90.69%, as well as the highest overall F1-score of 88.92% with moderately large parameter size. The results obtained from our other benchmark models also demonstrate trade-offs between complexity and performance. We also provide an extensive explainability analysis using GRAD-CAM and LIME for interpreting the strengths and pitfalls of the models. Our results reveal substantial room for improvement in underwater species recognition and demonstrate the value of AQUA20 as a foundation for future research in this domain. The dataset is publicly available at: https://huggingface.co/datasets/taufiktrf/AQUA20.
Monotonic Location Attention for Length Generalization
We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al., 2020). Our code is available on GitHub.
VOCABTRIM: Vocabulary Pruning for Efficient Speculative Decoding in LLMs
In this paper, we introduce a simple training-free technique to improve the performance of drafter-based speculative decoding (SpD) methods that incorporates language modeling head (LM head) during drafting process. A drafter-based speculative decoding leverages one or more smaller language models, a.k.a. drafters or draft models, to sample a draft sequence or tree consisting of multiple tokens, followed by verification by a base LLM, a target model, accepting a subset as its valid generation. As it is usually considered that the speculative decoding requires one-to-one mapping between vocabularies of the target model and the draft model, it has been natural to share the vocabulary between them, or even share the LM head as in EAGLE or Medusa. We first identify that this draft token sampling scheme inherently contains an unnecessary inference overhead in drafting, especially for some target LLMs with very large vocabularies. Then, we propose a simple technique, VocabTrim, to mitigate the drafting overhead to improve the generation speed in memory-bound environment. VocabTrim reconstructs the drafter LM head to contain only a limited set of tokens, selected by the most frequently sampled from the vocabulary of the target model. While limiting the vocabulary in drafting slightly degrades the acceptance rate, it significantly reduces the drafting latency in memory-bound process which is often the case on edge devices, resulting in higher memory-bound speed up (MBSU). We show that our method can boost the memory-bound speed-up for Llama-3 models on Spec-Bench, specifically by 16% for Llama-3.2-3B-Instruct.
Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models
Large language models have achieved remarkable success in recent years, primarily due to the implementation of self-attention mechanisms. However, traditional Softmax attention suffers from numerical instability and reduced performance as the length of inference tokens increases. This paper addresses these issues by decomposing the Softmax operation into a non-linear transformation and the l_1-norm. We identify the latter as essential for maintaining model performance. By replacing the non-linear transformation with the Softplus activation function and introducing a dynamic scale factor for different token lengths based on invariance entropy, we create a novel attention mechanism with performance better than conventional Softmax attention across various inference lengths. To further improve the length extrapolation ability of the proposed attention mechanism, we introduce a fine-tuning-free re-weighting mechanism that amplifies significant attention weights while diminishing weaker ones, enabling the model to concentrate more effectively on relevant tokens without requiring retraining. When combined with our proposed attention mechanism, this approach demonstrates significant promise in managing longer sequences, maintaining nearly constant validation loss even at 16times the training token length while ensuring numerical stability. Our code is available at: https://github.com/iminfine/freeatten.
Deep Encoder, Shallow Decoder: Reevaluating Non-autoregressive Machine Translation
Much recent effort has been invested in non-autoregressive neural machine translation, which appears to be an efficient alternative to state-of-the-art autoregressive machine translation on modern GPUs. In contrast to the latter, where generation is sequential, the former allows generation to be parallelized across target token positions. Some of the latest non-autoregressive models have achieved impressive translation quality-speed tradeoffs compared to autoregressive baselines. In this work, we reexamine this tradeoff and argue that autoregressive baselines can be substantially sped up without loss in accuracy. Specifically, we study autoregressive models with encoders and decoders of varied depths. Our extensive experiments show that given a sufficiently deep encoder, a single-layer autoregressive decoder can substantially outperform strong non-autoregressive models with comparable inference speed. We show that the speed disadvantage for autoregressive baselines compared to non-autoregressive methods has been overestimated in three aspects: suboptimal layer allocation, insufficient speed measurement, and lack of knowledge distillation. Our results establish a new protocol for future research toward fast, accurate machine translation. Our code is available at https://github.com/jungokasai/deep-shallow.
SpargeAttn: Accurate Sparse Attention Accelerating Any Model Inference
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
Accelerating Production LLMs with Combined Token/Embedding Speculators
This technical report describes the design and training of novel speculative decoding draft models, for accelerating the inference speeds of large language models in a production environment. By conditioning draft predictions on both context vectors and sampled tokens, we can train our speculators to efficiently predict high-quality n-grams, which the base model then accepts or rejects. This allows us to effectively predict multiple tokens per inference forward pass, accelerating wall-clock inference speeds of highly optimized base model implementations by a factor of 2-3x. We explore these initial results and describe next steps for further improvements.
Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training
LLMs are computationally expensive to pre-train due to their large scale. Model growth emerges as a promising approach by leveraging smaller models to accelerate the training of larger ones. However, the viability of these model growth methods in efficient LLM pre-training remains underexplored. This work identifies three critical textit{O}bstacles: (O1) lack of comprehensive evaluation, (O2) untested viability for scaling, and (O3) lack of empirical guidelines. To tackle O1, we summarize existing approaches into four atomic growth operators and systematically evaluate them in a standardized LLM pre-training setting. Our findings reveal that a depthwise stacking operator, called G_{stack}, exhibits remarkable acceleration in training, leading to decreased loss and improved overall performance on eight standard NLP benchmarks compared to strong baselines. Motivated by these promising results, we conduct extensive experiments to delve deeper into G_{stack} to address O2 and O3. For O2 (untested scalability), our study shows that G_{stack} is scalable and consistently performs well, with experiments up to 7B LLMs after growth and pre-training LLMs with 750B tokens. For example, compared to a conventionally trained 7B model using 300B tokens, our G_{stack} model converges to the same loss with 194B tokens, resulting in a 54.6\% speedup. We further address O3 (lack of empirical guidelines) by formalizing guidelines to determine growth timing and growth factor for G_{stack}, making it practical in general LLM pre-training. We also provide in-depth discussions and comprehensive ablation studies of G_{stack}. Our code and pre-trained model are available at https://llm-stacking.github.io/{https://llm-stacking.github.io/}.
Folded context condensation in Path Integral formalism for infinite context transformers
This short note is written for rapid communication of long context training and to share the idea of how to train it with low memory usage. In the note, we generalize the attention algorithm and neural network of Generative Pre-Trained Transformers and reinterpret it in Path integral formalism. First, the role of the transformer is understood as the time evolution of the token state and second, it is suggested that the all key-token states in the same time as the query-token can attend to the attention with the query token states. As a result of the repetitive time evolution, it is discussed that the token states in the past sequence meats the token states in the present sequence so that the attention between separated sequences becomes possible for maintaining infinite contextual information just by using low memory for limited size of sequence. For the experiment, the 12 input token window size was taken and one GPU with 24GB memory was used for the pre-training. It was confirmed that more than 150 length context is preserved. The sampling result of the training, the code and the other details will be included in the revised version of this note later.
Drop your Decoder: Pre-training with Bag-of-Word Prediction for Dense Passage Retrieval
Masked auto-encoder pre-training has emerged as a prevalent technique for initializing and enhancing dense retrieval systems. It generally utilizes additional Transformer decoder blocks to provide sustainable supervision signals and compress contextual information into dense representations. However, the underlying reasons for the effectiveness of such a pre-training technique remain unclear. The usage of additional Transformer-based decoders also incurs significant computational costs. In this study, we aim to shed light on this issue by revealing that masked auto-encoder (MAE) pre-training with enhanced decoding significantly improves the term coverage of input tokens in dense representations, compared to vanilla BERT checkpoints. Building upon this observation, we propose a modification to the traditional MAE by replacing the decoder of a masked auto-encoder with a completely simplified Bag-of-Word prediction task. This modification enables the efficient compression of lexical signals into dense representations through unsupervised pre-training. Remarkably, our proposed method achieves state-of-the-art retrieval performance on several large-scale retrieval benchmarks without requiring any additional parameters, which provides a 67% training speed-up compared to standard masked auto-encoder pre-training with enhanced decoding.
Infinite Retrieval: Attention Enhanced LLMs in Long-Context Processing
Limited by the context window size of Large Language Models(LLMs), handling various tasks with input tokens exceeding the upper limit has been challenging, whether it is a simple direct retrieval task or a complex multi-hop reasoning task. Although various methods have been proposed to enhance the long-context processing capabilities of LLMs, they either incur substantial post-training costs, or require additional tool modules(e.g.,RAG), or have not shown significant improvement in realistic tasks. Our work observes the correlation between the attention distribution and generated answers across each layer, and establishes the attention allocation aligns with retrieval-augmented capabilities through experiments. Drawing on the above insights, we propose a novel method InfiniRetri that leverages the LLMs's own attention information to enable accurate retrieval across inputs of infinitely length. Our evaluations indicate that InfiniRetri achieves 100% accuracy in the Needle-In-a-Haystack(NIH) test over 1M tokens using a 0.5B parameter model, surpassing other method or larger models and setting a new state-of-the-art(SOTA). Moreover, our method achieves significant performance improvements on real-world benchmarks, with a maximum 288% improvement. In addition, InfiniRetri can be applied to any Transformer-based LLMs without additional training and substantially reduces inference latency and compute overhead in long texts. In summary, our comprehensive studies show InfiniRetri's potential for practical applications and creates a paradigm for retrievaling information using LLMs own capabilities under infinite-length tokens. Code will be released in link.
FNetAR: Mixing Tokens with Autoregressive Fourier Transforms
In this note we examine the autoregressive generalization of the FNet algorithm, in which self-attention layers from the standard Transformer architecture are substituted with a trivial sparse-uniformsampling procedure based on Fourier transforms. Using the Wikitext-103 benchmark, we demonstratethat FNetAR retains state-of-the-art performance (25.8 ppl) on the task of causal language modelingcompared to a Transformer-XL baseline (24.2 ppl) with only half the number self-attention layers,thus providing further evidence for the superfluity of deep neural networks with heavily compoundedattention mechanisms. The autoregressive Fourier transform could likely be used for parameterreduction on most Transformer-based time-series prediction models.
Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning
Reasoning large language models are rapidly evolving across various domains. However, their capabilities in handling complex financial tasks still require in-depth exploration. In this paper, we introduce Fin-R1, a reasoning large language model specifically designed for the financial sector. Fin-R1 is built using a two-stage architecture, leveraging a financial reasoning dataset distilled and processed based on DeepSeek-R1. Through supervised fine-tuning (SFT) and reinforcement learning (RL) training, it demonstrates performance close to DeepSeek-R1 with a parameter size of 7 billion across a range of financial reasoning tasks. It achieves the state-of-the-art (SOTA) in the FinQA and ConvFinQA tasks between those LLMs in our evaluation, surpassing larger models in other tasks as well. Fin-R1 showcases strong reasoning and decision-making capabilities, providing solutions to various problems encountered in the financial domain. Our code is available at https://github.com/SUFE-AIFLM-Lab/Fin-R1.
Structured Pruning for Deep Convolutional Neural Networks: A survey
The remarkable performance of deep Convolutional neural networks (CNNs) is generally attributed to their deeper and wider architectures, which can come with significant computational costs. Pruning neural networks has thus gained interest since it effectively lowers storage and computational costs. In contrast to weight pruning, which results in unstructured models, structured pruning provides the benefit of realistic acceleration by producing models that are friendly to hardware implementation. The special requirements of structured pruning have led to the discovery of numerous new challenges and the development of innovative solutions. This article surveys the recent progress towards structured pruning of deep CNNs. We summarize and compare the state-of-the-art structured pruning techniques with respect to filter ranking methods, regularization methods, dynamic execution, neural architecture search, the lottery ticket hypothesis, and the applications of pruning. While discussing structured pruning algorithms, we briefly introduce the unstructured pruning counterpart to emphasize their differences. Furthermore, we provide insights into potential research opportunities in the field of structured pruning. A curated list of neural network pruning papers can be found at https://github.com/he-y/Awesome-Pruning
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
Transformers are slow and memory-hungry on long sequences, since the time and memory complexity of self-attention are quadratic in sequence length. Approximate attention methods have attempted to address this problem by trading off model quality to reduce the compute complexity, but often do not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms IO-aware -- accounting for reads and writes between levels of GPU memory. We propose FlashAttention, an IO-aware exact attention algorithm that uses tiling to reduce the number of memory reads/writes between GPU high bandwidth memory (HBM) and GPU on-chip SRAM. We analyze the IO complexity of FlashAttention, showing that it requires fewer HBM accesses than standard attention, and is optimal for a range of SRAM sizes. We also extend FlashAttention to block-sparse attention, yielding an approximate attention algorithm that is faster than any existing approximate attention method. FlashAttention trains Transformers faster than existing baselines: 15% end-to-end wall-clock speedup on BERT-large (seq. length 512) compared to the MLPerf 1.1 training speed record, 3times speedup on GPT-2 (seq. length 1K), and 2.4times speedup on long-range arena (seq. length 1K-4K). FlashAttention and block-sparse FlashAttention enable longer context in Transformers, yielding higher quality models (0.7 better perplexity on GPT-2 and 6.4 points of lift on long-document classification) and entirely new capabilities: the first Transformers to achieve better-than-chance performance on the Path-X challenge (seq. length 16K, 61.4% accuracy) and Path-256 (seq. length 64K, 63.1% accuracy).
Judge Decoding: Faster Speculative Sampling Requires Going Beyond Model Alignment
The performance of large language models (LLMs) is closely linked to their underlying size, leading to ever-growing networks and hence slower inference. Speculative decoding has been proposed as a technique to accelerate autoregressive generation, leveraging a fast draft model to propose candidate tokens, which are then verified in parallel based on their likelihood under the target model. While this approach guarantees to reproduce the target output, it incurs a substantial penalty: many high-quality draft tokens are rejected, even when they represent objectively valid continuations. Indeed, we show that even powerful draft models such as GPT-4o, as well as human text cannot achieve high acceptance rates under the standard verification scheme. This severely limits the speedup potential of current speculative decoding methods, as an early rejection becomes overwhelmingly likely when solely relying on alignment of draft and target. We thus ask the following question: Can we adapt verification to recognize correct, but non-aligned replies? To this end, we draw inspiration from the LLM-as-a-judge framework, which demonstrated that LLMs are able to rate answers in a versatile way. We carefully design a dataset to elicit the same capability in the target model by training a compact module on top of the embeddings to produce ``judgements" of the current continuation. We showcase our strategy on the Llama-3.1 family, where our 8b/405B-Judge achieves a speedup of 9x over Llama-405B, while maintaining its quality on a large range of benchmarks. These benefits remain present even in optimized inference frameworks, where our method reaches up to 141 tokens/s for 8B/70B-Judge and 129 tokens/s for 8B/405B on 2 and 8 H100s respectively.
ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
Interface Design for Self-Supervised Speech Models
Self-supervised speech (SSL) models have recently become widely adopted for many downstream speech processing tasks. The general usage pattern is to employ SSL models as feature extractors, and then train a downstream prediction head to solve a specific task. However, different layers of SSL models have been shown to capture different types of information, and the methods of combining them are not well studied. To this end, we extend the general framework for SSL model utilization by proposing the interface that connects the upstream and downstream. Under this view, the dominant technique of combining features via a layerwise weighted sum can be regarded as a specific interface. We propose several alternative interface designs and demonstrate that the weighted sum interface is suboptimal for many tasks. In particular, we show that a convolutional interface whose depth scales logarithmically with the depth of the upstream model consistently outperforms many other interface designs.
Predicting masked tokens in stochastic locations improves masked image modeling
Self-supervised learning is a promising paradigm in deep learning that enables learning from unlabeled data by constructing pretext tasks that require learning useful representations. In natural language processing, the dominant pretext task has been masked language modeling (MLM), while in computer vision there exists an equivalent called Masked Image Modeling (MIM). However, MIM is challenging because it requires predicting semantic content in accurate locations. E.g, given an incomplete picture of a dog, we can guess that there is a tail, but we cannot determine its exact location. In this work, we propose FlexPredict, a stochastic model that addresses this challenge by incorporating location uncertainty into the model. Specifically, we condition the model on stochastic masked token positions to guide the model toward learning features that are more robust to location uncertainties. Our approach improves downstream performance on a range of tasks, e.g, compared to MIM baselines, FlexPredict boosts ImageNet linear probing by 1.6% with ViT-B and by 2.5% for semi-supervised video segmentation using ViT-L.
You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet
Linear attention mechanisms have gained prominence in causal language models due to their linear computational complexity and enhanced speed. However, the inherent decay mechanism in linear attention presents challenges when applied to multi-dimensional sequence modeling tasks, such as image processing and multi-modal learning. In these scenarios, the utilization of sequential scanning to establish a global receptive field necessitates multiple scans for multi-dimensional data, thereby leading to inefficiencies. This paper identifies the inefficiency caused by a multiplicative linear recurrence and proposes an efficient alternative additive linear recurrence to avoid the issue, as it can handle multi-dimensional data within a single scan. We further develop an efficient multi-dimensional sequential modeling framework called LightNet based on the new recurrence. Moreover, we present two new multi-dimensional linear relative positional encoding methods, MD-TPE and MD-LRPE to enhance the model's ability to discern positional information in multi-dimensional scenarios. Our empirical evaluations across various tasks, including image classification, image generation, bidirectional language modeling, and autoregressive language modeling, demonstrate the efficacy of LightNet, showcasing its potential as a versatile and efficient solution for multi-dimensional sequential modeling.
MetaFormer Is Actually What You Need for Vision
Transformers have shown great potential in computer vision tasks. A common belief is their attention-based token mixer module contributes most to their competence. However, recent works show the attention-based module in Transformers can be replaced by spatial MLPs and the resulted models still perform quite well. Based on this observation, we hypothesize that the general architecture of the Transformers, instead of the specific token mixer module, is more essential to the model's performance. To verify this, we deliberately replace the attention module in Transformers with an embarrassingly simple spatial pooling operator to conduct only basic token mixing. Surprisingly, we observe that the derived model, termed as PoolFormer, achieves competitive performance on multiple computer vision tasks. For example, on ImageNet-1K, PoolFormer achieves 82.1% top-1 accuracy, surpassing well-tuned Vision Transformer/MLP-like baselines DeiT-B/ResMLP-B24 by 0.3%/1.1% accuracy with 35%/52% fewer parameters and 50%/62% fewer MACs. The effectiveness of PoolFormer verifies our hypothesis and urges us to initiate the concept of "MetaFormer", a general architecture abstracted from Transformers without specifying the token mixer. Based on the extensive experiments, we argue that MetaFormer is the key player in achieving superior results for recent Transformer and MLP-like models on vision tasks. This work calls for more future research dedicated to improving MetaFormer instead of focusing on the token mixer modules. Additionally, our proposed PoolFormer could serve as a starting baseline for future MetaFormer architecture design. Code is available at https://github.com/sail-sg/poolformer.
torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP
Reproducibility in scientific work has been becoming increasingly important in research communities such as machine learning, natural language processing, and computer vision communities due to the rapid development of the research domains supported by recent advances in deep learning. In this work, we present a significantly upgraded version of torchdistill, a modular-driven coding-free deep learning framework significantly upgraded from the initial release, which supports only image classification and object detection tasks for reproducible knowledge distillation experiments. To demonstrate that the upgraded framework can support more tasks with third-party libraries, we reproduce the GLUE benchmark results of BERT models using a script based on the upgraded torchdistill, harmonizing with various Hugging Face libraries. All the 27 fine-tuned BERT models and configurations to reproduce the results are published at Hugging Face, and the model weights have already been widely used in research communities. We also reimplement popular small-sized models and new knowledge distillation methods and perform additional experiments for computer vision tasks.
1M-Deepfakes Detection Challenge
The detection and localization of deepfake content, particularly when small fake segments are seamlessly mixed with real videos, remains a significant challenge in the field of digital media security. Based on the recently released AV-Deepfake1M dataset, which contains more than 1 million manipulated videos across more than 2,000 subjects, we introduce the 1M-Deepfakes Detection Challenge. This challenge is designed to engage the research community in developing advanced methods for detecting and localizing deepfake manipulations within the large-scale high-realistic audio-visual dataset. The participants can access the AV-Deepfake1M dataset and are required to submit their inference results for evaluation across the metrics for detection or localization tasks. The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection and localization systems. Evaluation scripts, baseline models, and accompanying code will be available on https://github.com/ControlNet/AV-Deepfake1M.
Fast and Robust Early-Exiting Framework for Autoregressive Language Models with Synchronized Parallel Decoding
To tackle the high inference latency exhibited by autoregressive language models, previous studies have proposed an early-exiting framework that allocates adaptive computation paths for each token based on the complexity of generating the subsequent token. However, we observed several shortcomings, including performance degradation caused by a state copying mechanism or numerous exit paths, and sensitivity to exit confidence thresholds. Consequently, we propose a Fast and Robust Early-Exiting (FREE) framework, which incorporates a shallow-deep module and a synchronized parallel decoding. Our framework enables faster inference by synchronizing the decoding process of the current token with previously stacked early-exited tokens. Furthermore, as parallel decoding allows us to observe predictions from both shallow and deep models, we present a novel adaptive threshold estimator that exploits a Beta mixture model to determine suitable confidence thresholds. We empirically demonstrated the superiority of our proposed framework on extensive generation tasks.
From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers
Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99times on FLUX and 5.00times on HunyuanVideo without additional training. On DiT, it achieves 3.41 lower FID compared with previous SOTA at 4.53times acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer
TriangleMix: A Lossless and Efficient Attention Pattern for Long Context Prefilling
Large Language Models (LLMs) rely on attention mechanisms whose time complexity grows quadratically with input sequence length, creating significant computational bottlenecks during the prefilling stage. Existing static sparse attention methods typically degrade accuracy, while dynamic sparsity methods introduce additional computational overhead due to runtime sparse index estimation. To address these limitations, we propose TriangleMix, a novel training-free static attention pattern. TriangleMix employs dense attention in shallow layers and switches to a triangle-shaped sparse pattern in deeper layers. Extensive experiments demonstrate that TriangleMix reduces attention overhead by 3.7x to 15.3x in deep layers, and decreases overall Time-to-First-Token (TTFT) by 12% to 32% for sequence lengths ranging from 32K to 128K, without sacrificing model accuracy. Moreover, TriangleMix can be seamlessly integrated with dynamic sparsity methods to achieve further speedup, e.g. accelerating MInference by 19% at 128K, highlighting its potential to enhance LLM inference efficiency.
Recasting Self-Attention with Holographic Reduced Representations
In recent years, self-attention has become the dominant paradigm for sequence modeling in a variety of domains. However, in domains with very long sequence lengths the O(T^2) memory and O(T^2 H) compute costs can make using transformers infeasible. Motivated by problems in malware detection, where sequence lengths of T geq 100,000 are a roadblock to deep learning, we re-cast self-attention using the neuro-symbolic approach of Holographic Reduced Representations (HRR). In doing so we perform the same high-level strategy of the standard self-attention: a set of queries matching against a set of keys, and returning a weighted response of the values for each key. Implemented as a ``Hrrformer'' we obtain several benefits including O(T H log H) time complexity, O(T H) space complexity, and convergence in 10times fewer epochs. Nevertheless, the Hrrformer achieves near state-of-the-art accuracy on LRA benchmarks and we are able to learn with just a single layer. Combined, these benefits make our Hrrformer the first viable Transformer for such long malware classification sequences and up to 280times faster to train on the Long Range Arena benchmark. Code is available at https://github.com/NeuromorphicComputationResearchProgram/Hrrformer
Deep Networks with Stochastic Depth
Very deep convolutional networks with hundreds of layers have led to significant reductions in error on competitive benchmarks. Although the unmatched expressiveness of the many layers can be highly desirable at test time, training very deep networks comes with its own set of challenges. The gradients can vanish, the forward flow often diminishes, and the training time can be painfully slow. To address these problems, we propose stochastic depth, a training procedure that enables the seemingly contradictory setup to train short networks and use deep networks at test time. We start with very deep networks but during training, for each mini-batch, randomly drop a subset of layers and bypass them with the identity function. This simple approach complements the recent success of residual networks. It reduces training time substantially and improves the test error significantly on almost all data sets that we used for evaluation. With stochastic depth we can increase the depth of residual networks even beyond 1200 layers and still yield meaningful improvements in test error (4.91% on CIFAR-10).
Faster Causal Attention Over Large Sequences Through Sparse Flash Attention
Transformer-based language models have found many diverse applications requiring them to process sequences of increasing length. For these applications, the causal self-attention -- which is the only component scaling quadratically w.r.t. the sequence length -- becomes a central concern. While many works have proposed schemes to sparsify the attention patterns and reduce the computational overhead of self-attention, those are often limited by implementations concerns and end up imposing a simple and static structure over the attention matrix. Conversely, implementing more dynamic sparse attentions often results in runtimes significantly slower than computing the full attention using the Flash implementation from Dao et al. (2022). We extend FlashAttention to accommodate a large class of attention sparsity patterns that, in particular, encompass key/query dropping and hashing-based attention. This leads to implementations with no computational complexity overhead and a multi-fold runtime speedup on top of FlashAttention. Even with relatively low degrees of sparsity, our method improves visibly upon FlashAttention as the sequence length increases. Without sacrificing perplexity, we increase the training speed of a transformer language model by 2.0times and 3.3times for sequences of respectively 8k and 16k tokens.
QuickSilver -- Speeding up LLM Inference through Dynamic Token Halting, KV Skipping, Contextual Token Fusion, and Adaptive Matryoshka Quantization
Inference accounts for the majority of latency and energy consumption in large language model (LLM) deployments, often exceeding 90% of total cost. While training-time efficiency has seen extensive progress, runtime optimization remains a key bottleneck, particularly under autoregressive decoding. Existing approaches -- such as pruning, quantization, early exits, and speculative decoding -- often require retraining, architectural changes, or disrupt decoding compatibility. We introduce QuickSilver, a modular, token-level framework that enables semantic adaptivity at inference time without altering model weights or structure. QuickSilver integrates four synergistic mechanisms: (i) Dynamic Token Halting, which halts computation for tokens with converged representations; (ii) KV Cache Skipping, which selectively suppresses memory writes to reduce attention overhead; and (iii) Contextual Token Fusion, which collapses redundant tokens into shared paths to shrink sequence length. Unlike speculative decoding or MoE routing, QuickSilver operates entirely on frozen, dense models and requires no auxiliary networks. Applied to GPT-2 and Llama-2 across WikiText-103 and C4, QuickSilver achieves up to 39.6% FLOP reduction with negligible perplexity degradation (<=0.2).
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Training large deep neural networks on massive datasets is computationally very challenging. There has been recent surge in interest in using large batch stochastic optimization methods to tackle this issue. The most prominent algorithm in this line of research is LARS, which by employing layerwise adaptive learning rates trains ResNet on ImageNet in a few minutes. However, LARS performs poorly for attention models like BERT, indicating that its performance gains are not consistent across tasks. In this paper, we first study a principled layerwise adaptation strategy to accelerate training of deep neural networks using large mini-batches. Using this strategy, we develop a new layerwise adaptive large batch optimization technique called LAMB; we then provide convergence analysis of LAMB as well as LARS, showing convergence to a stationary point in general nonconvex settings. Our empirical results demonstrate the superior performance of LAMB across various tasks such as BERT and ResNet-50 training with very little hyperparameter tuning. In particular, for BERT training, our optimizer enables use of very large batch sizes of 32868 without any degradation of performance. By increasing the batch size to the memory limit of a TPUv3 Pod, BERT training time can be reduced from 3 days to just 76 minutes (Table 1). The LAMB implementation is available at https://github.com/tensorflow/addons/blob/master/tensorflow_addons/optimizers/lamb.py
Byte-Level Recursive Convolutional Auto-Encoder for Text
This article proposes to auto-encode text at byte-level using convolutional networks with a recursive architecture. The motivation is to explore whether it is possible to have scalable and homogeneous text generation at byte-level in a non-sequential fashion through the simple task of auto-encoding. We show that non-sequential text generation from a fixed-length representation is not only possible, but also achieved much better auto-encoding results than recurrent networks. The proposed model is a multi-stage deep convolutional encoder-decoder framework using residual connections, containing up to 160 parameterized layers. Each encoder or decoder contains a shared group of modules that consists of either pooling or upsampling layers, making the network recursive in terms of abstraction levels in representation. Results for 6 large-scale paragraph datasets are reported, in 3 languages including Arabic, Chinese and English. Analyses are conducted to study several properties of the proposed model.
P3P: Pseudo-3D Pre-training for Scaling 3D Voxel-based Masked Autoencoders
3D pre-training is crucial to 3D perception tasks. Nevertheless, limited by the difficulties in collecting clean and complete 3D data, 3D pre-training has persistently faced data scaling challenges. In this work, we introduce a novel self-supervised pre-training framework that incorporates millions of images into 3D pre-training corpora by leveraging a large depth estimation model. New pre-training corpora encounter new challenges in representation ability and embedding efficiency of models. Previous pre-training methods rely on farthest point sampling and k-nearest neighbors to embed a fixed number of 3D tokens. However, these approaches prove inadequate when it comes to embedding millions of samples that feature a diverse range of point numbers, spanning from 1,000 to 100,000. In contrast, we propose a tokenizer with linear-time complexity, which enables the efficient embedding of a flexible number of tokens. Accordingly, a new 3D reconstruction target is proposed to cooperate with our 3D tokenizer. Our method achieves state-of-the-art performance in 3D classification, few-shot learning, and 3D segmentation. Code is available at https://github.com/XuechaoChen/P3P-MAE.
Pangu Ultra MoE: How to Train Your Big MoE on Ascend NPUs
Sparse large language models (LLMs) with Mixture of Experts (MoE) and close to a trillion parameters are dominating the realm of most capable language models. However, the massive model scale poses significant challenges for the underlying software and hardware systems. In this paper, we aim to uncover a recipe to harness such scale on Ascend NPUs. The key goals are better usage of the computing resources under the dynamic sparse model structures and materializing the expected performance gain on the actual hardware. To select model configurations suitable for Ascend NPUs without repeatedly running the expensive experiments, we leverage simulation to compare the trade-off of various model hyperparameters. This study led to Pangu Ultra MoE, a sparse LLM with 718 billion parameters, and we conducted experiments on the model to verify the simulation results. On the system side, we dig into Expert Parallelism to optimize the communication between NPU devices to reduce the synchronization overhead. We also optimize the memory efficiency within the devices to further reduce the parameter and activation management overhead. In the end, we achieve an MFU of 30.0% when training Pangu Ultra MoE, with performance comparable to that of DeepSeek R1, on 6K Ascend NPUs, and demonstrate that the Ascend system is capable of harnessing all the training stages of the state-of-the-art language models. Extensive experiments indicate that our recipe can lead to efficient training of large-scale sparse language models with MoE. We also study the behaviors of such models for future reference.
Decoder-Only or Encoder-Decoder? Interpreting Language Model as a Regularized Encoder-Decoder
The sequence-to-sequence (seq2seq) task aims at generating the target sequence based on the given input source sequence. Traditionally, most of the seq2seq task is resolved by the Encoder-Decoder framework which requires an encoder to encode the source sequence and a decoder to generate the target text. Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task. Despite the significant advancements in applying language models to the seq2seq task, there is still a lack of thorough analysis on the effectiveness of the decoder-only language model architecture. This paper aims to address this gap by conducting a detailed comparison between the encoder-decoder architecture and the decoder-only language model framework through the analysis of a regularized encoder-decoder structure. This structure is designed to replicate all behaviors in the classical decoder-only language model but has an encoder and a decoder making it easier to be compared with the classical encoder-decoder structure. Based on the analysis, we unveil the attention degeneration problem in the language model, namely, as the generation step number grows, less and less attention is focused on the source sequence. To give a quantitative understanding of this problem, we conduct a theoretical sensitivity analysis of the attention output with respect to the source input. Grounded on our analysis, we propose a novel partial attention language model to solve the attention degeneration problem. Experimental results on machine translation, summarization, and data-to-text generation tasks support our analysis and demonstrate the effectiveness of our proposed model.
RADLADS: Rapid Attention Distillation to Linear Attention Decoders at Scale
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement. Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper
Long-Tailed Visual Recognition via Self-Heterogeneous Integration with Knowledge Excavation
Deep neural networks have made huge progress in the last few decades. However, as the real-world data often exhibits a long-tailed distribution, vanilla deep models tend to be heavily biased toward the majority classes. To address this problem, state-of-the-art methods usually adopt a mixture of experts (MoE) to focus on different parts of the long-tailed distribution. Experts in these methods are with the same model depth, which neglects the fact that different classes may have different preferences to be fit by models with different depths. To this end, we propose a novel MoE-based method called Self-Heterogeneous Integration with Knowledge Excavation (SHIKE). We first propose Depth-wise Knowledge Fusion (DKF) to fuse features between different shallow parts and the deep part in one network for each expert, which makes experts more diverse in terms of representation. Based on DKF, we further propose Dynamic Knowledge Transfer (DKT) to reduce the influence of the hardest negative class that has a non-negligible impact on the tail classes in our MoE framework. As a result, the classification accuracy of long-tailed data can be significantly improved, especially for the tail classes. SHIKE achieves the state-of-the-art performance of 56.3%, 60.3%, 75.4%, and 41.9% on CIFAR100-LT (IF100), ImageNet-LT, iNaturalist 2018, and Places-LT, respectively.
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes datasets, achieving the test set performance of 89.0\% and 82.1\% without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow at https://github.com/tensorflow/models/tree/master/research/deeplab.
DySpec: Faster Speculative Decoding with Dynamic Token Tree Structure
While speculative decoding has recently appeared as a promising direction for accelerating the inference of large language models (LLMs), the speedup and scalability are strongly bounded by the token acceptance rate. Prevalent methods usually organize predicted tokens as independent chains or fixed token trees, which fails to generalize to diverse query distributions. In this paper, we propose DySpec, a faster speculative decoding algorithm with a novel dynamic token tree structure. We begin by bridging the draft distribution and acceptance rate from intuitive and empirical clues, and successfully show that the two variables are strongly correlated. Based on this, we employ a greedy strategy to dynamically expand the token tree at run time. Theoretically, we show that our method can achieve optimal results under mild assumptions. Empirically, DySpec yields a higher acceptance rate and speedup than fixed trees. DySpec can drastically improve the throughput and reduce the latency of token generation across various data distribution and model sizes, which significantly outperforms strong competitors, including Specinfer and Sequoia. Under low temperature setting, DySpec can improve the throughput up to 9.1times and reduce the latency up to 9.4times on Llama2-70B. Under high temperature setting, DySpec can also improve the throughput up to 6.21times, despite the increasing difficulty of speculating more than one token per step for draft model.
LongSpec: Long-Context Lossless Speculative Decoding with Efficient Drafting and Verification
As Large Language Models (LLMs) can now process extremely long contexts, efficient inference over these extended inputs has become increasingly important, especially for emerging applications like LLM agents that highly depend on this capability. Speculative decoding (SD) offers a promising lossless acceleration technique compared to lossy alternatives such as quantization and model cascades. However, most state-of-the-art SD methods are trained on short texts (typically fewer than 4k tokens), making them unsuitable for long-context scenarios. Specifically, adapting these methods to long contexts presents three key challenges: (1) the excessive memory demands posed by draft models due to large Key-Value (KV) cache; (2) performance degradation resulting from the mismatch between short-context training and long-context inference; and (3) inefficiencies in tree attention mechanisms when managing long token sequences. This work introduces LongSpec, a framework that addresses these challenges through three core innovations: a memory-efficient draft model with a constant-sized KV cache; novel position indices that mitigate the training-inference mismatch; and an attention aggregation strategy that combines fast prefix computation with standard tree attention to enable efficient decoding. Experimental results confirm the effectiveness of LongSpec, achieving up to a 3.26x speedup over strong Flash Attention baselines across five long-context understanding datasets, as well as a 2.25x reduction in wall-clock time on the AIME24 long reasoning task with the QwQ model, demonstrating significant latency improvements for long-context applications. The code is available at https://github.com/sail-sg/LongSpec.
Multi-Stage Vision Token Dropping: Towards Efficient Multimodal Large Language Model
The vision tokens in multimodal large language models usually exhibit significant spatial and temporal redundancy and take up most of the input tokens, which harms their inference efficiency. To solve this problem, some recent works were introduced to drop the unimportant tokens during inference where the importance of each token is decided only by the information in either the vision encoding stage or the prefilling stage. In this paper, we propose Multi-stage Token Dropping (MustDrop) to measure the importance of each token from the whole lifecycle, including the vision encoding stage, prefilling stage, and decoding stage. Concretely, in the visual encoding stage, MustDrop merges spatially adjacent tokens with high similarity, and establishes a key token set to retain the most vision-critical tokens, preventing them from being discarded in later stages. In the prefilling stage, MustDrop further compresses vision tokens by the guidance of text semantics, with a dual-attention filtering strategy. In the decoding stage, an output-aware cache policy is proposed to further reduce the size of the KV cache. By leveraging tailored strategies in the multi-stage process, MustDrop can more precisely recognize the important and redundant tokens, thus achieving an optimal balance between performance and efficiency. For instance, MustDrop reduces about 88.5\% FLOPs on LLaVA with a compression ratio of 92.2\% while maintaining comparable accuracy. Our codes are available at https://github.com/liuting20/MustDrop.
NormFormer: Improved Transformer Pretraining with Extra Normalization
During pretraining, the Pre-LayerNorm transformer suffers from a gradient magnitude mismatch: gradients at early layers are much larger than at later layers. These issues can be alleviated by our proposed NormFormer architecture, which adds three normalization operations to each layer: a Layer Norm after self attention, head-wise scaling of self-attention outputs, and a Layer Norm after the first fully connected layer. The extra operations incur negligible compute cost (+0.4% parameter increase), but improve pretraining perplexity and downstream task performance for both causal and masked language models ranging from 125 Million to 2.7 Billion parameters. For example, adding NormFormer on top of our strongest 1.3B parameter baseline can reach equal perplexity 24% faster, or converge 0.27 perplexity better in the same compute budget. This model reaches GPT3-Large (1.3B) zero shot performance 60% faster. For masked language modeling, NormFormer improves fine-tuned GLUE performance by 1.9% on average. Code to train NormFormer models is available in fairseq https://github.com/pytorch/fairseq/tree/main/examples/normformer .
EASTER: Efficient and Scalable Text Recognizer
Recent progress in deep learning has led to the development of Optical Character Recognition (OCR) systems which perform remarkably well. Most research has been around recurrent networks as well as complex gated layers which make the overall solution complex and difficult to scale. In this paper, we present an Efficient And Scalable TExt Recognizer (EASTER) to perform optical character recognition on both machine printed and handwritten text. Our model utilises 1-D convolutional layers without any recurrence which enables parallel training with considerably less volume of data. We experimented with multiple variations of our architecture and one of the smallest variant (depth and number of parameter wise) performs comparably to RNN based complex choices. Our 20-layered deepest variant outperforms RNN architectures with a good margin on benchmarking datasets like IIIT-5k and SVT. We also showcase improvements over the current best results on offline handwritten text recognition task. We also present data generation pipelines with augmentation setup to generate synthetic datasets for both handwritten and machine printed text.
Compressing Chain-of-Thought in LLMs via Step Entropy
Large Language Models (LLMs) using Chain-of-Thought (CoT) prompting excel at complex reasoning but generate verbose thought processes with considerable redundancy, leading to increased inference costs and reduced efficiency. We introduce a novel CoT compression framework based on step entropy, a metric that quantifies the informational contribution of individual reasoning steps to identify redundancy. Through theoretical analysis and extensive empirical validation on mathematical reasoning benchmarks, we demonstrate that steps with low entropy are indeed highly redundant. Our experiments reveal that an astonishing 80\% of low-entropy intermediate steps can be pruned with minor degradation in the final answer accuracy across DeepSeek-R1-7B, 14B and Qwen3-8B. This finding sharply contrasts with random or high-entropy pruning, which severely impairs reasoning performance. Building on this, we propose a novel two-stage training strategy combining Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) reinforcement learning. This approach enables LLMs to autonomously learn to generate compressed COTs during inference by strategically incorporating [SKIP] tokens. Our method significantly enhances LLM inference efficiency while rigorously preserving accuracy, offering profound implications for practical LLM deployment and a deeper understanding of reasoning structures.
Scaling Laws for Speculative Decoding
The escalating demand for efficient decoding in large language models (LLMs) is particularly critical for reasoning-intensive architectures like OpenAI-o3 and DeepSeek-R1, which depend on extended chain-of-thought reasoning. This study investigates speculative decoding techniques through dense LLM architectures to establish foundational insights for accelerating reasoning tasks. While speculative decoding methods leveraging parallel draft-verification cycles have emerged as promising acceleration techniques, the scaling laws governing decoding efficiency remain under-explored compared to conventional backbone LLMs developed through Pretraining->SFT->RLHF training paradigms. In this work, we discover Log-linear Scaling Laws (Theorem 1.1, 1.2 and 1.3) governing draft model acceptance rate (or decoding speed) across three dimensions: pretraining token volume, draft model capacity, and decoding batch size. Building on these laws, we achieve Scylla, which coordinates multi-dimensional scaling for popular LLMs (Llama2/3, Qwen2.5). Empirical validation shows Scylla achieves 1.5-2.2 higher acceptance rate than EAGLE2 and 0.3 higher than EAGLE3 at temperature T = 0, with peak performance gains on summarization and QA tasks (Figure 2). Industrial inference engine deployments demonstrate 2X decoding throughput improvements over EAGLE2 (Table 5), validating the transformative potential of systematic scaling for efficient LLM inference. Code will be released later.
Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree
We seek to improve deep neural networks by generalizing the pooling operations that play a central role in current architectures. We pursue a careful exploration of approaches to allow pooling to learn and to adapt to complex and variable patterns. The two primary directions lie in (1) learning a pooling function via (two strategies of) combining of max and average pooling, and (2) learning a pooling function in the form of a tree-structured fusion of pooling filters that are themselves learned. In our experiments every generalized pooling operation we explore improves performance when used in place of average or max pooling. We experimentally demonstrate that the proposed pooling operations provide a boost in invariance properties relative to conventional pooling and set the state of the art on several widely adopted benchmark datasets; they are also easy to implement, and can be applied within various deep neural network architectures. These benefits come with only a light increase in computational overhead during training and a very modest increase in the number of model parameters.
Improving Multi-candidate Speculative Decoding
Speculative Decoding (SD) is a technique to accelerate the inference of Large Language Models (LLMs) by using a lower complexity draft model to propose candidate tokens verified by a larger target model. To further improve efficiency, Multi-Candidate Speculative Decoding (MCSD) improves upon this by sampling multiple candidate tokens from the draft model at each step and verifying them in parallel, thus increasing the chances of accepting a token and reducing generation time. Existing MCSD methods rely on the draft model to initialize the multi-candidate sequences and use static length and tree attention structure for draft generation. However, such an approach suffers from the draft and target model's output distribution differences, especially in dynamic generation context. In this work, we introduce an improved version of MCSD that includes a target model initialized multi-candidate process, dynamic sliced topology-aware causal mask for dynamic length adjustment, and decision models to optimize early stopping. Our framework improves the acceptance rate, defined as the ratio of the longest draft sequence length accepted by the target model over the maximum draft sequence length, by a maximum of 164% and gains a maximum of 75% generation speed up over the MCSD baseline. We also conduct an ablation study to evaluate the impact of the decision model.
CLIP with Quality Captions: A Strong Pretraining for Vision Tasks
CLIP models perform remarkably well on zero-shot classification and retrieval tasks. But recent studies have shown that learnt representations in CLIP are not well suited for dense prediction tasks like object detection, semantic segmentation or depth estimation. More recently, multi-stage training methods for CLIP models was introduced to mitigate the weak performance of CLIP on downstream tasks. In this work, we find that simply improving the quality of captions in image-text datasets improves the quality of CLIP's visual representations, resulting in significant improvement on downstream dense prediction vision tasks. In fact, we find that CLIP pretraining with good quality captions can surpass recent supervised, self-supervised and weakly supervised pretraining methods. We show that when CLIP model with ViT-B/16 as image encoder is trained on well aligned image-text pairs it obtains 12.1% higher mIoU and 11.5% lower RMSE on semantic segmentation and depth estimation tasks over recent state-of-the-art Masked Image Modeling (MIM) pretraining methods like Masked Autoencoder (MAE). We find that mobile architectures also benefit significantly from CLIP pretraining. A recent mobile vision architecture, MCi2, with CLIP pretraining obtains similar performance as Swin-L, pretrained on ImageNet-22k for semantic segmentation task while being 6.1times smaller. Moreover, we show that improving caption quality results in 10times data efficiency when finetuning for dense prediction tasks.
A Comprehensive Study of Deep Bidirectional LSTM RNNs for Acoustic Modeling in Speech Recognition
We present a comprehensive study of deep bidirectional long short-term memory (LSTM) recurrent neural network (RNN) based acoustic models for automatic speech recognition (ASR). We study the effect of size and depth and train models of up to 8 layers. We investigate the training aspect and study different variants of optimization methods, batching, truncated backpropagation, different regularization techniques such as dropout and L_2 regularization, and different gradient clipping variants. The major part of the experimental analysis was performed on the Quaero corpus. Additional experiments also were performed on the Switchboard corpus. Our best LSTM model has a relative improvement in word error rate of over 14\% compared to our best feed-forward neural network (FFNN) baseline on the Quaero task. On this task, we get our best result with an 8 layer bidirectional LSTM and we show that a pretraining scheme with layer-wise construction helps for deep LSTMs. Finally we compare the training calculation time of many of the presented experiments in relation with recognition performance. All the experiments were done with RETURNN, the RWTH extensible training framework for universal recurrent neural networks in combination with RASR, the RWTH ASR toolkit.
When Attention Sink Emerges in Language Models: An Empirical View
Language Models (LMs) assign significant attention to the first token, even if it is not semantically important, which is known as attention sink. This phenomenon has been widely adopted in applications such as streaming/long context generation, KV cache optimization, inference acceleration, model quantization, and others. Despite its widespread use, a deep understanding of attention sink in LMs is still lacking. In this work, we first demonstrate that attention sinks exist universally in LMs with various inputs, even in small models. Furthermore, attention sink is observed to emerge during the LM pre-training, motivating us to investigate how optimization, data distribution, loss function, and model architecture in LM pre-training influence its emergence. We highlight that attention sink emerges after effective optimization on sufficient training data. The sink position is highly correlated with the loss function and data distribution. Most importantly, we find that attention sink acts more like key biases, storing extra attention scores, which could be non-informative and not contribute to the value computation. We also observe that this phenomenon (at least partially) stems from tokens' inner dependence on attention scores as a result of softmax normalization. After relaxing such dependence by replacing softmax attention with other attention operations, such as sigmoid attention without normalization, attention sinks do not emerge in LMs up to 1B parameters. The code is available at https://github.com/sail-sg/Attention-Sink.
Hydra: Sequentially-Dependent Draft Heads for Medusa Decoding
To combat the memory bandwidth-bound nature of autoregressive LLM inference, previous research has proposed the speculative decoding framework. To perform speculative decoding, a small draft model proposes candidate continuations of the input sequence, that are then verified in parallel by the base model. One way to specify the draft model, as used in the recent Medusa decoding framework, is as a collection of light-weight heads, called draft heads, that operate on the base model's hidden states. To date, all existing draft heads have been sequentially independent, meaning that they speculate tokens in the candidate continuation independently of any preceding tokens in the candidate continuation. In this work, we propose Hydra heads, a sequentially dependent, drop-in replacement for standard draft heads that significantly improves speculation accuracy. Decoding with Hydra heads improves throughput compared to Medusa decoding with standard draft heads. We further explore the design space of Hydra head training objectives and architectures, and propose a carefully-tuned Hydra head recipe, which we call Hydra++, that improves decoding throughput by 1.31x and 2.71x compared to Medusa decoding and autoregressive decoding, respectively. Overall, Hydra heads are a simple intervention on standard draft heads that significantly improve the end-to-end speed of draft head based speculative decoding.
ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6times larger batch sizes and boost throughput by up to 3.04times on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs
Most large multimodal models (LMMs) are implemented by feeding visual tokens as a sequence into the first layer of a large language model (LLM). The resulting architecture is simple but significantly increases computation and memory costs, as it has to handle a large number of additional tokens in its input layer. This paper presents a new architecture DeepStack for LMMs. Considering N layers in the language and vision transformer of LMMs, we stack the visual tokens into N groups and feed each group to its aligned transformer layer from bottom to top. Surprisingly, this simple method greatly enhances the power of LMMs to model interactions among visual tokens across layers but with minimal additional cost. We apply DeepStack to both language and vision transformer in LMMs, and validate the effectiveness of DeepStack LMMs with extensive empirical results. Using the same context length, our DeepStack 7B and 13B parameters surpass their counterparts by 2.7 and 2.9 on average across 9 benchmarks, respectively. Using only one-fifth of the context length, DeepStack rivals closely to the counterparts that use the full context length. These gains are particularly pronounced on high-resolution tasks, e.g., 4.2, 11.0, and 4.0 improvements on TextVQA, DocVQA, and InfoVQA compared to LLaVA-1.5-7B, respectively. We further apply DeepStack to vision transformer layers, which brings us a similar amount of improvements, 3.8 on average compared with LLaVA-1.5-7B.
Deep Long-Tailed Learning: A Survey
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this paper aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.
TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention
Large language models (LLMs) have driven significant advancements across diverse NLP tasks, with long-context models gaining prominence for handling extended inputs. However, the expanding key-value (KV) cache size required by Transformer architectures intensifies the memory constraints, particularly during the decoding phase, creating a significant bottleneck. Existing sparse attention mechanisms designed to address this bottleneck have two limitations: (1) they often fail to reliably identify the most relevant tokens for attention, and (2) they overlook the spatial coherence of token selection across consecutive Transformer layers, which can lead to performance degradation and substantial overhead in token selection. This paper introduces TidalDecode, a simple yet effective algorithm and system for fast and accurate LLM decoding through position persistent sparse attention. TidalDecode leverages the spatial coherence of tokens selected by existing sparse attention methods and introduces a few token selection layers that perform full attention to identify the tokens with the highest attention scores, while all other layers perform sparse attention with the pre-selected tokens. This design enables TidalDecode to substantially reduce the overhead of token selection for sparse attention without sacrificing the quality of the generated results. Evaluation on a diverse set of LLMs and tasks shows that TidalDecode closely matches the generative performance of full attention methods while reducing the LLM decoding latency by up to 2.1x.
Improved training of end-to-end attention models for speech recognition
Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h and LibriSpeech 1000h tasks. In particular, we report the state-of-the-art word error rates (WER) of 3.54% on the dev-clean and 3.82% on the test-clean evaluation subsets of LibriSpeech. We introduce a new pretraining scheme by starting with a high time reduction factor and lowering it during training, which is crucial both for convergence and final performance. In some experiments, we also use an auxiliary CTC loss function to help the convergence. In addition, we train long short-term memory (LSTM) language models on subword units. By shallow fusion, we report up to 27% relative improvements in WER over the attention baseline without a language model.
Arctic-SnowCoder: Demystifying High-Quality Data in Code Pretraining
Recent studies have been increasingly demonstrating that high-quality data is crucial for effective pretraining of language models. However, the precise definition of "high-quality" remains underexplored. Focusing on the code domain, we introduce Arctic-SnowCoder-1.3B, a data-efficient base code model pretrained on 555B tokens through three phases of progressively refined data: (1) general pretraining with 500B standard-quality code tokens, preprocessed through basic filtering, deduplication, and decontamination, (2) continued pretraining with 50B high-quality tokens, selected from phase one by a BERT-style quality annotator trained to distinguish good code from random data, using positive examples drawn from high-quality code files, along with instruction data from Magicoder and StarCoder2-Instruct, and (3) enhanced pretraining with 5B synthetic data created by Llama-3.1-70B using phase two data as seeds, adapting the Magicoder approach for pretraining. Despite being trained on a limited dataset, Arctic-SnowCoder achieves state-of-the-art performance on BigCodeBench, a coding benchmark focusing on practical and challenging programming tasks, compared to similarly sized models trained on no more than 1T tokens, outperforming Phi-1.5-1.3B by 36%. Across all evaluated benchmarks, Arctic-SnowCoder-1.3B beats StarCoderBase-3B pretrained on 1T tokens. Additionally, it matches the performance of leading small base code models trained on trillions of tokens. For example, Arctic-SnowCoder-1.3B surpasses StarCoder2-3B, pretrained on over 3.3T tokens, on HumanEval+, a benchmark that evaluates function-level code generation, and remains competitive on BigCodeBench. Our evaluation presents a comprehensive analysis justifying various design choices for Arctic-SnowCoder. Most importantly, we find that the key to high-quality data is its alignment with the distribution of downstream applications.
BurstAttention: An Efficient Distributed Attention Framework for Extremely Long Sequences
Effective attention modules have played a crucial role in the success of Transformer-based large language models (LLMs), but the quadratic time and memory complexities of these attention modules also pose a challenge when processing long sequences. One potential solution for the long sequence problem is to utilize distributed clusters to parallelize the computation of attention modules across multiple devices (e.g., GPUs). However, adopting a distributed approach inevitably introduces extra memory overheads to store local attention results and incurs additional communication costs to aggregate local results into global ones. In this paper, we propose a distributed attention framework named ``BurstAttention'' to optimize memory access and communication operations at both the global cluster and local device levels. In our experiments, we compare BurstAttention with other competitive distributed attention solutions for long sequence processing. The experimental results under different length settings demonstrate that BurstAttention offers significant advantages for processing long sequences compared with these competitive baselines, reducing 40% communication overheads and achieving 2 X speedup during training 32K sequence length on 8 X A100.
GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the residual path to dominate over sub-layer outputs and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings.
Don't Think It Twice: Exploit Shift Invariance for Efficient Online Streaming Inference of CNNs
Deep learning time-series processing often relies on convolutional neural networks with overlapping windows. This overlap allows the network to produce an output faster than the window length. However, it introduces additional computations. This work explores the potential to optimize computational efficiency during inference by exploiting convolution's shift-invariance properties to skip the calculation of layer activations between successive overlapping windows. Although convolutions are shift-invariant, zero-padding and pooling operations, widely used in such networks, are not efficient and complicate efficient streaming inference. We introduce StreamiNNC, a strategy to deploy Convolutional Neural Networks for online streaming inference. We explore the adverse effects of zero padding and pooling on the accuracy of streaming inference, deriving theoretical error upper bounds for pooling during streaming. We address these limitations by proposing signal padding and pooling alignment and provide guidelines for designing and deploying models for StreamiNNC. We validate our method in simulated data and on three real-world biomedical signal processing applications. StreamiNNC achieves a low deviation between streaming output and normal inference for all three networks (2.03 - 3.55% NRMSE). This work demonstrates that it is possible to linearly speed up the inference of streaming CNNs processing overlapping windows, negating the additional computation typically incurred by overlapping windows.
MDCS: More Diverse Experts with Consistency Self-distillation for Long-tailed Recognition
Recently, multi-expert methods have led to significant improvements in long-tail recognition (LTR). We summarize two aspects that need further enhancement to contribute to LTR boosting: (1) More diverse experts; (2) Lower model variance. However, the previous methods didn't handle them well. To this end, we propose More Diverse experts with Consistency Self-distillation (MDCS) to bridge the gap left by earlier methods. Our MDCS approach consists of two core components: Diversity Loss (DL) and Consistency Self-distillation (CS). In detail, DL promotes diversity among experts by controlling their focus on different categories. To reduce the model variance, we employ KL divergence to distill the richer knowledge of weakly augmented instances for the experts' self-distillation. In particular, we design Confident Instance Sampling (CIS) to select the correctly classified instances for CS to avoid biased/noisy knowledge. In the analysis and ablation study, we demonstrate that our method compared with previous work can effectively increase the diversity of experts, significantly reduce the variance of the model, and improve recognition accuracy. Moreover, the roles of our DL and CS are mutually reinforcing and coupled: the diversity of experts benefits from the CS, and the CS cannot achieve remarkable results without the DL. Experiments show our MDCS outperforms the state-of-the-art by 1% sim 2% on five popular long-tailed benchmarks, including CIFAR10-LT, CIFAR100-LT, ImageNet-LT, Places-LT, and iNaturalist 2018. The code is available at https://github.com/fistyee/MDCS.
DeltaLLM: A Training-Free Framework Exploiting Temporal Sparsity for Efficient Edge LLM Inference
Deploying Large Language Models (LLMs) on edge devices remains challenging due to their quadratically increasing computations with the sequence length. Existing studies for dynamic attention pruning are designed for hardware with massively parallel computation capabilities, such as GPUs or TPUs, and aim at long context lengths (e.g., 64K), making them unsuitable for edge scenarios. We present DeltaLLM, a training-free framework that exploits temporal sparsity in attention patterns to enable efficient LLM inference across both the prefilling and decoding stages, on resource-constrained edge devices. DeltaLLM introduces an accuracy- and memory-aware delta matrix construction strategy that introduces temporal sparsity, and a context-aware hybrid attention mechanism that combines full attention in a local context window with delta approximation outside it to increase accuracy. We evaluate our framework on the edge-device-friendly BitNet-b1.58-2B-4T model and Llama3.2-1B-Instruct model across diverse language tasks. The results show that on BitNet, our framework increases the attention sparsity from 0% to 60% during the prefilling stage with slight accuracy improvement on the WG task, and 0% to 57% across both the prefilling and decoding stages, with even higher F1 score from 29.63 to 30.97 on SQuAD-v2 task. On the Llama model, it can also achieve up to 60% sparsity during the prefilling stage and around 57% across both stages with negligible accuracy drop. These results demonstrate that DeltaLLM offers a promising solution for efficient edge deployment, requiring no fine-tuning and seamlessly integrating with existing inference pipelines.
AutoChunk: Automated Activation Chunk for Memory-Efficient Long Sequence Inference
Large deep learning models have achieved impressive performance across a range of applications. However, their large memory requirements, including parameter memory and activation memory, have become a significant challenge for their practical serving. While existing methods mainly address parameter memory, the importance of activation memory has been overlooked. Especially for long input sequences, activation memory is expected to experience a significant exponential growth as the length of sequences increases. In this approach, we propose AutoChunk, an automatic and adaptive compiler system that efficiently reduces activation memory for long sequence inference by chunk strategies. The proposed system generates chunk plans by optimizing through multiple stages. In each stage, the chunk search pass explores all possible chunk candidates and the chunk selection pass identifies the optimal one. At runtime, AutoChunk employs code generation to automatically apply chunk strategies. The experiments demonstrate that AutoChunk can reduce over 80\% of activation memory while maintaining speed loss within 10%, extend max sequence length by 3.2x to 11.7x, and outperform state-of-the-art methods by a large margin.
FFN Fusion: Rethinking Sequential Computation in Large Language Models
We introduce FFN Fusion, an architectural optimization technique that reduces sequential computation in large language models by identifying and exploiting natural opportunities for parallelization. Our key insight is that sequences of Feed-Forward Network (FFN) layers, particularly those remaining after the removal of specific attention layers, can often be parallelized with minimal accuracy impact. We develop a principled methodology for identifying and fusing such sequences, transforming them into parallel operations that significantly reduce inference latency while preserving model behavior. Applying these techniques to Llama-3.1-405B-Instruct, we create Llama-Nemotron-Ultra-253B-Base (Ultra-253B-Base), an efficient and soon-to-be publicly available model that achieves a 1.71X speedup in inference latency and 35X lower per-token cost while maintaining strong performance across benchmarks. Through extensive experiments on models from 49B to 253B parameters, we demonstrate that FFN Fusion becomes increasingly effective at larger scales and can complement existing optimization techniques like quantization and pruning. Most intriguingly, we find that even full transformer blocks containing both attention and FFN layers can sometimes be parallelized, suggesting new directions for neural architecture design.
DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence Modeling
For sequence models with large vocabularies, a majority of network parameters lie in the input and output layers. In this work, we describe a new method, DeFINE, for learning deep token representations efficiently. Our architecture uses a hierarchical structure with novel skip-connections which allows for the use of low dimensional input and output layers, reducing total parameters and training time while delivering similar or better performance versus existing methods. DeFINE can be incorporated easily in new or existing sequence models. Compared to state-of-the-art methods including adaptive input representations, this technique results in a 6% to 20% drop in perplexity. On WikiText-103, DeFINE reduces the total parameters of Transformer-XL by half with minimal impact on performance. On the Penn Treebank, DeFINE improves AWD-LSTM by 4 points with a 17% reduction in parameters, achieving comparable performance to state-of-the-art methods with fewer parameters. For machine translation, DeFINE improves the efficiency of the Transformer model by about 1.4 times while delivering similar performance.
Nemotron-CC: Transforming Common Crawl into a Refined Long-Horizon Pretraining Dataset
Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier ensembling, synthetic data rephrasing, and reduced reliance on heuristic filters. When training 8B parameter models for 1T tokens, using a high-quality subset of our data improves MMLU by 5.6 over DCLM, demonstrating the efficacy of our methods for boosting accuracies over a relatively short token horizon. Furthermore, our full 6.3T token dataset matches DCLM on MMLU, but contains four times more unique real tokens than DCLM. This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7.2T came from our dataset, is better than the Llama 3.1 8B model: +5 on MMLU, +3.1 on ARC-Challenge, and +0.5 on average across ten diverse tasks. The dataset is available at https://data.commoncrawl.org/contrib/Nemotron/Nemotron-CC/index.html
SkipDecode: Autoregressive Skip Decoding with Batching and Caching for Efficient LLM Inference
Autoregressive large language models (LLMs) have made remarkable progress in various natural language generation tasks. However, they incur high computation cost and latency resulting from the autoregressive token-by-token generation. To address this issue, several approaches have been proposed to reduce computational cost using early-exit strategies. These strategies enable faster text generation using reduced computation without applying the full computation graph to each token. While existing token-level early exit methods show promising results for online inference, they cannot be readily applied for batch inferencing and Key-Value caching. This is because they have to wait until the last token in a batch exits before they can stop computing. This severely limits the practical application of such techniques. In this paper, we propose a simple and effective token-level early exit method, SkipDecode, designed to work seamlessly with batch inferencing and KV caching. It overcomes prior constraints by setting up a singular exit point for every token in a batch at each sequence position. It also guarantees a monotonic decrease in exit points, thereby eliminating the need to recompute KV Caches for preceding tokens. Rather than terminating computation prematurely as in prior works, our approach bypasses lower to middle layers, devoting most of the computational resources to upper layers, allowing later tokens to benefit from the compute expenditure by earlier tokens. Our experimental results show that SkipDecode can obtain 2x to 5x inference speedups with negligible regression across a variety of tasks. This is achieved using OPT models of 1.3 billion and 6.7 billion parameters, all the while being directly compatible with batching and KV caching optimization techniques.
SkyLadder: Better and Faster Pretraining via Context Window Scheduling
Recent advancements in LLM pretraining have featured ever-expanding context windows to process longer sequences. However, our pilot study reveals that models pretrained with shorter context windows consistently outperform their long-context counterparts under a fixed token budget. This finding motivates us to explore an optimal context window scheduling strategy to better balance long-context capability with pretraining efficiency. To this end, we propose SkyLadder, a simple yet effective approach that implements a short-to-long context window transition. SkyLadder preserves strong standard benchmark performance, while matching or exceeding baseline results on long context tasks. Through extensive experiments, we pre-train 1B-parameter models (up to 32K context) and 3B-parameter models (8K context) on 100B tokens, demonstrating that SkyLadder yields consistent gains of up to 3.7% on common benchmarks, while achieving up to 22% faster training speeds compared to baselines. The code is at https://github.com/sail-sg/SkyLadder.
Universal Approximation Theorem for a Single-Layer Transformer
Deep learning employs multi-layer neural networks trained via the backpropagation algorithm. This approach has achieved success across many domains and relies on adaptive gradient methods such as the Adam optimizer. Sequence modeling evolved from recurrent neural networks to attention-based models, culminating in the Transformer architecture. Transformers have achieved state-of-the-art performance in natural language processing (for example, BERT and GPT-3) and have been applied in computer vision and computational biology. However, theoretical understanding of these models remains limited. In this paper, we examine the mathematical foundations of deep learning and Transformers and present a novel theoretical result. We review key concepts from linear algebra, probability, and optimization that underpin deep learning, and we analyze the multi-head self-attention mechanism and the backpropagation algorithm in detail. Our main contribution is a universal approximation theorem for Transformers: we prove that a single-layer Transformer, comprising one self-attention layer followed by a position-wise feed-forward network with ReLU activation, can approximate any continuous sequence-to-sequence mapping on a compact domain to arbitrary precision. We provide a formal statement and a complete proof. Finally, we present case studies that demonstrate the practical implications of this result. Our findings advance the theoretical understanding of Transformer models and help bridge the gap between theory and practice.
LM-Infinite: Simple On-the-Fly Length Generalization for Large Language Models
In recent years, there have been remarkable advancements in the performance of Transformer-based Large Language Models (LLMs) across various domains. As these LLMs are deployed for increasingly complex tasks, they often face the needs to conduct longer reasoning processes or understanding larger contexts. In these situations, the length generalization failure of LLMs on long sequences become more prominent. Most pre-training schemes truncate training sequences to a fixed length (such as 2048 for LLaMa). LLMs often struggle to generate fluent texts, let alone carry out downstream tasks, after longer contexts, even with relative positional encoding which is designed to cope with this problem. Common solutions such as finetuning on longer corpora often involves daunting hardware and time costs and requires careful training process design. To more efficiently leverage the generation capacity of existing LLMs, we theoretically and empirically investigate the main out-of-distribution (OOD) factors contributing to this problem. Inspired by this diagnosis, we propose a simple yet effective solution for on-the-fly length generalization, LM-Infinite, which involves only a Lambda-shaped attention mask and a distance limit while requiring no parameter updates or learning. We find it applicable to a variety of LLMs using relative-position encoding methods. LM-Infinite is computational efficient with O(n) time and space, and demonstrates consistent fluency and generation quality to as long as 32k tokens on ArXiv and OpenWebText2 datasets, with 2.72x decoding speedup. On downstream task such as passkey retrieval, it continues to work on inputs much longer than training lengths where vanilla models fail immediately.
Efficient Pretraining Length Scaling
Recent advances in large language models have demonstrated the effectiveness of length scaling during post-training, yet its potential in pre-training remains underexplored. We present the Parallel Hidden Decoding Transformer (PHD-Transformer), a novel framework that enables efficient length scaling during pre-training while maintaining inference efficiency. PHD-Transformer achieves this through an innovative KV cache management strategy that distinguishes between original tokens and hidden decoding tokens. By retaining only the KV cache of original tokens for long-range dependencies while immediately discarding hidden decoding tokens after use, our approach maintains the same KV cache size as the vanilla transformer while enabling effective length scaling. To further enhance performance, we introduce two optimized variants: PHD-SWA employs sliding window attention to preserve local dependencies, while PHD-CSWA implements chunk-wise sliding window attention to eliminate linear growth in pre-filling time. Extensive experiments demonstrate consistent improvements across multiple benchmarks.
TokenSkip: Controllable Chain-of-Thought Compression in LLMs
Chain-of-Thought (CoT) has been proven effective in enhancing the reasoning capabilities of large language models (LLMs). Recent advancements, such as OpenAI's o1 and DeepSeek-R1, suggest that scaling up the length of CoT sequences during inference could further boost LLM reasoning performance. However, due to the autoregressive nature of LLM decoding, longer CoT outputs lead to a linear increase in inference latency, adversely affecting user experience, particularly when the CoT exceeds 10,000 tokens. To address this limitation, we analyze the semantic importance of tokens within CoT outputs and reveal that their contributions to reasoning vary. Building on this insight, we propose TokenSkip, a simple yet effective approach that enables LLMs to selectively skip less important tokens, allowing for controllable CoT compression. Extensive experiments across various models and tasks demonstrate the effectiveness of TokenSkip in reducing CoT token usage while preserving strong reasoning performance. Notably, when applied to Qwen2.5-14B-Instruct, TokenSkip reduces reasoning tokens by 40% (from 313 to 181) on GSM8K, with less than a 0.4% performance drop.
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Although deep learning has made great progress in recent years, the exploding economic and environmental costs of training neural networks are becoming unsustainable. To address this problem, there has been a great deal of research on *algorithmically-efficient deep learning*, which seeks to reduce training costs not at the hardware or implementation level, but through changes in the semantics of the training program. In this paper, we present a structured and comprehensive overview of the research in this field. First, we formalize the *algorithmic speedup* problem, then we use fundamental building blocks of algorithmically efficient training to develop a taxonomy. Our taxonomy highlights commonalities of seemingly disparate methods and reveals current research gaps. Next, we present evaluation best practices to enable comprehensive, fair, and reliable comparisons of speedup techniques. To further aid research and applications, we discuss common bottlenecks in the training pipeline (illustrated via experiments) and offer taxonomic mitigation strategies for them. Finally, we highlight some unsolved research challenges and present promising future directions.
Towards Scalable Exact Machine Unlearning Using Parameter-Efficient Fine-Tuning
Machine unlearning is the process of efficiently removing the influence of a training data instance from a trained machine learning model without retraining it from scratch. A popular subclass of unlearning approaches is exact machine unlearning, which focuses on techniques that explicitly guarantee the removal of the influence of a data instance from a model. Exact unlearning approaches use a machine learning model in which individual components are trained on disjoint subsets of the data. During deletion, exact unlearning approaches only retrain the affected components rather than the entire model. While existing approaches reduce retraining costs, it can still be expensive for an organization to retrain a model component as it requires halting a system in production, which leads to service failure and adversely impacts customers. To address these challenges, we introduce an exact unlearning framework -- Sequence-aware Sharded Sliced Training (S3T), designed to enhance the deletion capabilities of an exact unlearning system while minimizing the impact on model's performance. At the core of S3T, we utilize a lightweight parameter-efficient fine-tuning approach that enables parameter isolation by sequentially training layers with disjoint data slices. This enables efficient unlearning by simply deactivating the layers affected by data deletion. Furthermore, to reduce the retraining cost and improve model performance, we train the model on multiple data sequences, which allows S3T to handle an increased number of deletion requests. Both theoretically and empirically, we demonstrate that S3T attains superior deletion capabilities and enhanced performance compared to baselines across a wide range of settings.
DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today's biggest science mysteries. By leveraging DeepSpeed's current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research.
Chasing Low-Carbon Electricity for Practical and Sustainable DNN Training
Deep learning has experienced significant growth in recent years, resulting in increased energy consumption and carbon emission from the use of GPUs for training deep neural networks (DNNs). Answering the call for sustainability, conventional solutions have attempted to move training jobs to locations or time frames with lower carbon intensity. However, moving jobs to other locations may not always be feasible due to large dataset sizes or data regulations. Moreover, postponing training can negatively impact application service quality because the DNNs backing the service are not updated in a timely fashion. In this work, we present a practical solution that reduces the carbon footprint of DNN training without migrating or postponing jobs. Specifically, our solution observes real-time carbon intensity shifts during training and controls the energy consumption of GPUs, thereby reducing carbon footprint while maintaining training performance. Furthermore, in order to proactively adapt to shifting carbon intensity, we propose a lightweight machine learning algorithm that predicts the carbon intensity of the upcoming time frame. Our solution, Chase, reduces the total carbon footprint of training ResNet-50 on ImageNet by 13.6% while only increasing training time by 2.5%.
Training with Exploration Improves a Greedy Stack-LSTM Parser
We adapt the greedy Stack-LSTM dependency parser of Dyer et al. (2015) to support a training-with-exploration procedure using dynamic oracles(Goldberg and Nivre, 2013) instead of cross-entropy minimization. This form of training, which accounts for model predictions at training time rather than assuming an error-free action history, improves parsing accuracies for both English and Chinese, obtaining very strong results for both languages. We discuss some modifications needed in order to get training with exploration to work well for a probabilistic neural-network.
TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis
The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters, making TSPulse 10-100X smaller than existing pre-trained models. Its efficiency enables GPU-free inference and rapid pre-training, setting a new standard for efficient time-series pre-trained models. Models will be open-sourced soon.
TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction
Autoregressive next-token prediction is a standard pretraining method for large-scale language models, but its application to vision tasks is hindered by the non-sequential nature of image data, leading to cumulative errors. Most vision models employ masked autoencoder (MAE) based pretraining, which faces scalability issues. To address these challenges, we introduce TokenUnify, a novel pretraining method that integrates random token prediction, next-token prediction, and next-all token prediction. We provide theoretical evidence demonstrating that TokenUnify mitigates cumulative errors in visual autoregression. Cooperated with TokenUnify, we have assembled a large-scale electron microscopy (EM) image dataset with ultra-high resolution, ideal for creating spatially correlated long sequences. This dataset includes over 120 million annotated voxels, making it the largest neuron segmentation dataset to date and providing a unified benchmark for experimental validation. Leveraging the Mamba network inherently suited for long-sequence modeling on this dataset, TokenUnify not only reduces the computational complexity but also leads to a significant 45\% improvement in segmentation performance on downstream EM neuron segmentation tasks compared to existing methods. Furthermore, TokenUnify demonstrates superior scalability over MAE and traditional autoregressive methods, effectively bridging the gap between pretraining strategies for language and vision models. Code is available at https://github.com/ydchen0806/TokenUnify.
Efficient Content-Based Sparse Attention with Routing Transformers
Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to Oleft(n^{1.5}dright) from Oleft(n^2dright) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192.
Efficient Image Deblurring Networks based on Diffusion Models
This article introduces a sliding window model for defocus deblurring that achieves the best performance to date with extremely low memory usage. Named Swintormer, the method utilizes a diffusion model to generate latent prior features that assist in restoring more detailed images. It also extends the sliding window strategy to specialized Transformer blocks for efficient inference. Additionally, we have further optimized Multiply-Accumulate operations (Macs). Compared to the currently top-performing GRL method, our Swintormer model drastically reduces computational complexity from 140.35 GMACs to 8.02 GMacs, while also improving the Signal-to-Noise Ratio (SNR) for defocus deblurring from 27.04 dB to 27.07 dB. This new method allows for the processing of higher resolution images on devices with limited memory, significantly expanding potential application scenarios. The article concludes with an ablation study that provides an in-depth analysis of the impact of each network module on final performance. The source code and model will be available at the following website: https://github.com/bnm6900030/swintormer.
xKV: Cross-Layer SVD for KV-Cache Compression
Large Language Models (LLMs) with long context windows enable powerful applications but come at the cost of high memory consumption to store the Key and Value states (KV-Cache). Recent studies attempted to merge KV-cache from multiple layers into shared representations, yet these approaches either require expensive pretraining or rely on assumptions of high per-token cosine similarity across layers which generally does not hold in practice. We find that the dominant singular vectors are remarkably well-aligned across multiple layers of the KV-Cache. Exploiting this insight, we propose xKV, a simple post-training method that applies Singular Value Decomposition (SVD) on the KV-Cache of grouped layers. xKV consolidates the KV-Cache of multiple layers into a shared low-rank subspace, significantly reducing KV-Cache sizes. Through extensive evaluations on the RULER long-context benchmark with widely-used LLMs (e.g., Llama-3.1 and Qwen2.5), xKV achieves up to 6.8x higher compression rates than state-of-the-art inter-layer technique while improving accuracy by 2.7%. Moreover, xKV is compatible with the emerging Multi-Head Latent Attention (MLA) (e.g., DeepSeek-Coder-V2), yielding a notable 3x compression rates on coding tasks without performance degradation. These results highlight xKV's strong capability and versatility in addressing memory bottlenecks for long-context LLM inference. Our code is publicly available at: https://github.com/abdelfattah-lab/xKV.
DF40: Toward Next-Generation Deepfake Detection
We propose a new comprehensive benchmark to revolutionize the current deepfake detection field to the next generation. Predominantly, existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset (e.g., FF++) and testing them on other prevalent deepfake datasets. This protocol is often regarded as a "golden compass" for navigating SoTA detectors. But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world? If not, what underlying factors contribute to this gap? In this work, we found the dataset (both train and test) can be the "primary culprit" due to: (1) forgery diversity: Deepfake techniques are commonly referred to as both face forgery and entire image synthesis. Most existing datasets only contain partial types of them, with limited forgery methods implemented; (2) forgery realism: The dominated training dataset, FF++, contains out-of-date forgery techniques from the past four years. "Honing skills" on these forgeries makes it difficult to guarantee effective detection generalization toward nowadays' SoTA deepfakes; (3) evaluation protocol: Most detection works perform evaluations on one type, which hinders the development of universal deepfake detectors. To address this dilemma, we construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques. We then conduct comprehensive evaluations using 4 standard evaluation protocols and 8 representative detection methods, resulting in over 2,000 evaluations. Through these evaluations, we provide an extensive analysis from various perspectives, leading to 7 new insightful findings. We also open up 4 valuable yet previously underexplored research questions to inspire future works. Our project page is https://github.com/YZY-stack/DF40.
Deep Learning for Genomics: A Concise Overview
Advancements in genomic research such as high-throughput sequencing techniques have driven modern genomic studies into "big data" disciplines. This data explosion is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in a variety of fields such as vision, speech, and text processing. Yet genomics entails unique challenges to deep learning since we are expecting from deep learning a superhuman intelligence that explores beyond our knowledge to interpret the genome. A powerful deep learning model should rely on insightful utilization of task-specific knowledge. In this paper, we briefly discuss the strengths of different deep learning models from a genomic perspective so as to fit each particular task with a proper deep architecture, and remark on practical considerations of developing modern deep learning architectures for genomics. We also provide a concise review of deep learning applications in various aspects of genomic research, as well as pointing out potential opportunities and obstacles for future genomics applications.
Detection Transformer with Stable Matching
This paper is concerned with the matching stability problem across different decoder layers in DEtection TRansformers (DETR). We point out that the unstable matching in DETR is caused by a multi-optimization path problem, which is highlighted by the one-to-one matching design in DETR. To address this problem, we show that the most important design is to use and only use positional metrics (like IOU) to supervise classification scores of positive examples. Under the principle, we propose two simple yet effective modifications by integrating positional metrics to DETR's classification loss and matching cost, named position-supervised loss and position-modulated cost. We verify our methods on several DETR variants. Our methods show consistent improvements over baselines. By integrating our methods with DINO, we achieve 50.4 and 51.5 AP on the COCO detection benchmark using ResNet-50 backbones under 12 epochs and 24 epochs training settings, achieving a new record under the same setting. We achieve 63.8 AP on COCO detection test-dev with a Swin-Large backbone. Our code will be made available at https://github.com/IDEA-Research/Stable-DINO.
Training and Inference Efficiency of Encoder-Decoder Speech Models
Attention encoder-decoder model architecture is the backbone of several recent top performing foundation speech models: Whisper, Seamless, OWSM, and Canary-1B. However, the reported data and compute requirements for their training are prohibitive for many in the research community. In this work, we focus on the efficiency angle and ask the questions of whether we are training these speech models efficiently, and what can we do to improve? We argue that a major, if not the most severe, detrimental factor for training efficiency is related to the sampling strategy of sequential data. We show that negligence in mini-batch sampling leads to more than 50% computation being spent on padding. To that end, we study, profile, and optimize Canary-1B training to show gradual improvement in GPU utilization leading up to 5x increase in average batch sizes versus its original training settings. This in turn allows us to train an equivalent model using 4x less GPUs in the same wall time, or leverage the original resources and train it in 2x shorter wall time. Finally, we observe that the major inference bottleneck lies in the autoregressive decoder steps. We find that adjusting the model architecture to transfer model parameters from the decoder to the encoder results in a 3x inference speedup as measured by inverse real-time factor (RTFx) while preserving the accuracy and compute requirements for convergence. The training code and models will be available as open-source.
Squeezeformer: An Efficient Transformer for Automatic Speech Recognition
The recently proposed Conformer model has become the de facto backbone model for various downstream speech tasks based on its hybrid attention-convolution architecture that captures both local and global features. However, through a series of systematic studies, we find that the Conformer architecture's design choices are not optimal. After re-examining the design choices for both the macro and micro-architecture of Conformer, we propose Squeezeformer which consistently outperforms the state-of-the-art ASR models under the same training schemes. In particular, for the macro-architecture, Squeezeformer incorporates (i) the Temporal U-Net structure which reduces the cost of the multi-head attention modules on long sequences, and (ii) a simpler block structure of multi-head attention or convolution modules followed up by feed-forward module instead of the Macaron structure proposed in Conformer. Furthermore, for the micro-architecture, Squeezeformer (i) simplifies the activations in the convolutional block, (ii) removes redundant Layer Normalization operations, and (iii) incorporates an efficient depthwise down-sampling layer to efficiently sub-sample the input signal. Squeezeformer achieves state-of-the-art results of 7.5%, 6.5%, and 6.0% word-error-rate (WER) on LibriSpeech test-other without external language models, which are 3.1%, 1.4%, and 0.6% better than Conformer-CTC with the same number of FLOPs. Our code is open-sourced and available online.
RCMHA: Relative Convolutional Multi-Head Attention for Natural Language Modelling
The Attention module finds common usage in language modeling, presenting distinct challenges within the broader scope of Natural Language Processing. Multi-Head Attention (MHA) employs an absolute positional encoding, which imposes limitations on token length and entails substantial memory consumption during the processing of embedded inputs. The current remedy proposed by researchers involves the utilization of relative positional encoding, similar to the approach adopted in Transformer-XL or Relative Multi-Head Attention (RMHA), albeit the employed architecture consumes considerable memory resources. To address these challenges, this study endeavors to refine MHA, leveraging relative positional encoding in conjunction with the Depth-Wise Convolutional Layer architecture, which promises heightened accuracy coupled with minimized memory usage. The proposed RCMHA framework entails the modification of two integral components: firstly, the application of the Depth-Wise Convolutional Layer to the input embedding, encompassing Query, Key, and Value parameters; secondly, the incorporation of Relative Positional Encoding into the attention scoring phase, harmoniously integrated with Scaled Dot-Product Attention. Empirical experiments underscore the advantages of RCMHA, wherein it exhibits superior accuracy, boasting a score of 0.572 in comparison to alternative attention modules such as MHA, Multi-DConv-Head Attention (MDHA), and RMHA. Concerning memory utilization, RMHA emerges as the most frugal, demonstrating an average consumption of 2.98 GB, surpassing RMHA which necessitates 3.5 GB.
ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.
InPars-Light: Cost-Effective Unsupervised Training of Efficient Rankers
We carried out a reproducibility study of InPars recipe for unsupervised training of neural rankers. As a by-product of this study, we developed a simple-yet-effective modification of InPars, which we called InPars-light. Unlike InPars, InPars-light uses only a freely available language model BLOOM and 7x-100x smaller ranking models. On all five English retrieval collections (used in the original InPars study) we obtained substantial (7-30%) and statistically significant improvements over BM25 in nDCG or MRR using only a 30M parameter six-layer MiniLM ranker. In contrast, in the InPars study only a 100x larger MonoT5-3B model consistently outperformed BM25, whereas their smaller MonoT5-220M model (which is still 7x larger than our MiniLM ranker), outperformed BM25 only on MS MARCO and TREC DL 2020. In a purely unsupervised setting, our 435M parameter DeBERTA v3 ranker was roughly at par with the 7x larger MonoT5-3B: In fact, on three out of five datasets, it slightly outperformed MonoT5-3B. Finally, these good results were achieved by re-ranking only 100 candidate documents compared to 1000 used in InPars. We believe that InPars-light is the first truly cost-effective prompt-based unsupervised recipe to train and deploy neural ranking models that outperform BM25.
LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences, yet efficiently serving these long-context models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
Optimizing Speculative Decoding for Serving Large Language Models Using Goodput
Reducing the inference latency of large language models (LLMs) is crucial, and speculative decoding (SD) stands out as one of the most effective techniques. Rather than letting the LLM generate all tokens directly, speculative decoding employs effective proxies to predict potential outputs, which are then verified by the LLM without compromising the generation quality. Yet, deploying SD in real online LLM serving systems (with continuous batching) does not always yield improvement -- under higher request rates or low speculation accuracy, it paradoxically increases latency. Furthermore, there is no best speculation length work for all workloads under different system loads. Based on the observations, we develop a dynamic framework SmartSpec. SmartSpec dynamically determines the best speculation length for each request (from 0, i.e., no speculation, to many tokens) -- hence the associated speculative execution costs -- based on a new metric called goodput, which characterizes the current observed load of the entire system and the speculation accuracy. We show that SmartSpec consistently reduces average request latency by up to 3.2x compared to non-speculative decoding baselines across different sizes of target models, draft models, request rates, and datasets. Moreover, SmartSpec can be applied to different styles of speculative decoding, including traditional, model-based approaches as well as model-free methods like prompt lookup and tree-style decoding.
A Unified Implicit Attention Formulation for Gated-Linear Recurrent Sequence Models
Recent advances in efficient sequence modeling have led to attention-free layers, such as Mamba, RWKV, and various gated RNNs, all featuring sub-quadratic complexity in sequence length and excellent scaling properties, enabling the construction of a new type of foundation models. In this paper, we present a unified view of these models, formulating such layers as implicit causal self-attention layers. The formulation includes most of their sub-components and is not limited to a specific part of the architecture. The framework compares the underlying mechanisms on similar grounds for different layers and provides a direct means for applying explainability methods. Our experiments show that our attention matrices and attribution method outperform an alternative and a more limited formulation that was recently proposed for Mamba. For the other architectures for which our method is the first to provide such a view, our method is effective and competitive in the relevant metrics compared to the results obtained by state-of-the-art transformer explainability methods. Our code is publicly available.
Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of recent deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 44 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but they do not yet reach the accuracy of human deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are Better Dense Retrievers
Pre-trained Transformers (\eg BERT) have been commonly used in existing dense retrieval methods for parameter initialization, and recent studies are exploring more effective pre-training tasks for further improving the quality of dense vectors. Although various novel and effective tasks have been proposed, their different input formats and learning objectives make them hard to be integrated for jointly improving the model performance. In this work, we aim to unify a variety of pre-training tasks into the bottlenecked masked autoencoder manner, and integrate them into a multi-task pre-trained model, namely MASTER. Concretely, MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors. Based on it, we integrate three types of representative pre-training tasks: corrupted passages recovering, related passages recovering and PLMs outputs recovering, to characterize the inner-passage information, inter-passage relations and PLMs knowledge. Extensive experiments have shown that our approach outperforms competitive dense retrieval methods. Our code and data are publicly released in https://github.com/microsoft/SimXNS.
t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams
A recently introduced classifier, called SS3, has shown to be well suited to deal with early risk detection (ERD) problems on text streams. It obtained state-of-the-art performance on early depression and anorexia detection on Reddit in the CLEF's eRisk open tasks. SS3 was created to deal with ERD problems naturally since: it supports incremental training and classification over text streams, and it can visually explain its rationale. However, SS3 processes the input using a bag-of-word model lacking the ability to recognize important word sequences. This aspect could negatively affect the classification performance and also reduces the descriptiveness of visual explanations. In the standard document classification field, it is very common to use word n-grams to try to overcome some of these limitations. Unfortunately, when working with text streams, using n-grams is not trivial since the system must learn and recognize which n-grams are important "on the fly". This paper introduces t-SS3, an extension of SS3 that allows it to recognize useful patterns over text streams dynamically. We evaluated our model in the eRisk 2017 and 2018 tasks on early depression and anorexia detection. Experimental results suggest that t-SS3 is able to improve both current results and the richness of visual explanations.
Simple linear attention language models balance the recall-throughput tradeoff
Recent work has shown that attention-based language models excel at recall, the ability to ground generations in tokens previously seen in context. However, the efficiency of attention-based models is bottle-necked during inference by the KV-cache's aggressive memory consumption. In this work, we explore whether we can improve language model efficiency (e.g. by reducing memory consumption) without compromising on recall. By applying experiments and theory to a broad set of architectures, we identify a key tradeoff between a model's state size and recall ability. We show that efficient alternatives to attention (e.g. H3, Mamba, RWKV) maintain a fixed-size recurrent state, but struggle at recall. We propose BASED a simple architecture combining linear and sliding window attention. By varying BASED window size and linear attention feature dimension, we can dial the state size and traverse the pareto frontier of the recall-memory tradeoff curve, recovering the full quality of attention on one end and the small state size of attention-alternatives on the other. We train language models up to 1.3b parameters and show that BASED matches the strongest sub-quadratic models (e.g. Mamba) in perplexity and outperforms them on real-world recall-intensive tasks by 6.22 accuracy points. Implementations of linear attention are often less efficient than optimized standard attention implementations. To make BASED competitive, we develop IO-aware algorithms that enable 24x higher throughput on language generation than FlashAttention-2, when generating 1024 tokens using 1.3b parameter models. Code for this work is provided at: https://github.com/HazyResearch/based.
InfiniteHiP: Extending Language Model Context Up to 3 Million Tokens on a Single GPU
In modern large language models (LLMs), handling very long context lengths presents significant challenges as it causes slower inference speeds and increased memory costs. Additionally, most existing pre-trained LLMs fail to generalize beyond their original training sequence lengths. To enable efficient and practical long-context utilization, we introduce InfiniteHiP, a novel, and practical LLM inference framework that accelerates processing by dynamically eliminating irrelevant context tokens through a modular hierarchical token pruning algorithm. Our method also allows generalization to longer sequences by selectively applying various RoPE adjustment methods according to the internal attention patterns within LLMs. Furthermore, we offload the key-value cache to host memory during inference, significantly reducing GPU memory pressure. As a result, InfiniteHiP enables the processing of up to 3 million tokens on a single L40s 48GB GPU -- 3x larger -- without any permanent loss of context information. Our framework achieves an 18.95x speedup in attention decoding for a 1 million token context without requiring additional training. We implement our method in the SGLang framework and demonstrate its effectiveness and practicality through extensive evaluations.
Inference without Interference: Disaggregate LLM Inference for Mixed Downstream Workloads
Transformer-based large language model (LLM) inference serving is now the backbone of many cloud services. LLM inference consists of a prefill phase and a decode phase. However, existing LLM deployment practices often overlook the distinct characteristics of these phases, leading to significant interference. To mitigate interference, our insight is to carefully schedule and group inference requests based on their characteristics. We realize this idea in TetriInfer through three pillars. First, it partitions prompts into fixed-size chunks so that the accelerator always runs close to its computationsaturated limit. Second, it disaggregates prefill and decode instances so each can run independently. Finally, it uses a smart two-level scheduling algorithm augmented with predicted resource usage to avoid decode scheduling hotspots. Results show that TetriInfer improves time-to-first-token (TTFT), job completion time (JCT), and inference efficiency in turns of performance per dollar by a large margin, e.g., it uses 38% less resources all the while lowering average TTFT and average JCT by 97% and 47%, respectively.
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Note: This paper describes an older version of DeepLIFT. See https://arxiv.org/abs/1704.02685 for the newer version. Original abstract follows: The purported "black box" nature of neural networks is a barrier to adoption in applications where interpretability is essential. Here we present DeepLIFT (Learning Important FeaTures), an efficient and effective method for computing importance scores in a neural network. DeepLIFT compares the activation of each neuron to its 'reference activation' and assigns contribution scores according to the difference. We apply DeepLIFT to models trained on natural images and genomic data, and show significant advantages over gradient-based methods.
Efficient Backdoor Attacks for Deep Neural Networks in Real-world Scenarios
Recent deep neural networks (DNNs) have come to rely on vast amounts of training data, providing an opportunity for malicious attackers to exploit and contaminate the data to carry out backdoor attacks. These attacks significantly undermine the reliability of DNNs. However, existing backdoor attack methods make unrealistic assumptions, assuming that all training data comes from a single source and that attackers have full access to the training data. In this paper, we address this limitation by introducing a more realistic attack scenario where victims collect data from multiple sources, and attackers cannot access the complete training data. We refer to this scenario as data-constrained backdoor attacks. In such cases, previous attack methods suffer from severe efficiency degradation due to the entanglement between benign and poisoning features during the backdoor injection process. To tackle this problem, we propose a novel approach that leverages the pre-trained Contrastive Language-Image Pre-Training (CLIP) model. We introduce three CLIP-based technologies from two distinct streams: Clean Feature Suppression, which aims to suppress the influence of clean features to enhance the prominence of poisoning features, and Poisoning Feature Augmentation, which focuses on augmenting the presence and impact of poisoning features to effectively manipulate the model's behavior. To evaluate the effectiveness, harmlessness to benign accuracy, and stealthiness of our method, we conduct extensive experiments on 3 target models, 3 datasets, and over 15 different settings. The results demonstrate remarkable improvements, with some settings achieving over 100% improvement compared to existing attacks in data-constrained scenarios. Our research contributes to addressing the limitations of existing methods and provides a practical and effective solution for data-constrained backdoor attacks.
Diffusion Model Patching via Mixture-of-Prompts
We present Diffusion Model Patching (DMP), a simple method to boost the performance of pre-trained diffusion models that have already reached convergence, with a negligible increase in parameters. DMP inserts a small, learnable set of prompts into the model's input space while keeping the original model frozen. The effectiveness of DMP is not merely due to the addition of parameters but stems from its dynamic gating mechanism, which selects and combines a subset of learnable prompts at every step of the generative process (e.g., reverse denoising steps). This strategy, which we term "mixture-of-prompts", enables the model to draw on the distinct expertise of each prompt, essentially "patching" the model's functionality at every step with minimal yet specialized parameters. Uniquely, DMP enhances the model by further training on the same dataset on which it was originally trained, even in a scenario where significant improvements are typically not expected due to model convergence. Experiments show that DMP significantly enhances the converged FID of DiT-L/2 on FFHQ 256x256 by 10.38%, achieved with only a 1.43% parameter increase and 50K additional training iterations.
PALBERT: Teaching ALBERT to Ponder
Currently, pre-trained models can be considered the default choice for a wide range of NLP tasks. Despite their SoTA results, there is practical evidence that these models may require a different number of computing layers for different input sequences, since evaluating all layers leads to overconfidence in wrong predictions (namely overthinking). This problem can potentially be solved by implementing adaptive computation time approaches, which were first designed to improve inference speed. Recently proposed PonderNet may be a promising solution for performing an early exit by treating the exit layer's index as a latent variable. However, the originally proposed exit criterion, relying on sampling from trained posterior distribution on the probability of exiting from the i-th layer, introduces major variance in exit layer indices, significantly reducing the resulting model's performance. In this paper, we propose improving PonderNet with a novel deterministic Q-exit criterion and a revisited model architecture. We adapted the proposed mechanism to ALBERT and RoBERTa and compared it with recent methods for performing an early exit. We observed that the proposed changes can be considered significant improvements on the original PonderNet architecture and outperform PABEE on a wide range of GLUE tasks. In addition, we also performed an in-depth ablation study of the proposed architecture to further understand Lambda layers and their performance.
φ-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation
Inference-time optimization scales computation to derive deliberate reasoning steps for effective performance. While previous search-based strategies address the short-sightedness of auto-regressive generation, the vast search space leads to excessive exploration and insufficient exploitation. To strike an efficient balance to derive the optimal step, we frame the decoding strategy as foresight sampling, leveraging simulated future steps to obtain globally optimal step estimation. Built on it, we propose a novel decoding strategy, named phi-Decoding. To provide a precise and expressive estimation of step value, phi-Decoding approximates two distributions via foresight and clustering. Sampling from the joint distribution, the optimal steps can be selected for exploitation. To support adaptive computation allocation, we propose in-width and in-depth pruning strategies, featuring a light-weight solution to achieve inference efficiency. Extensive experiments across seven benchmarks show phi-Decoding outperforms strong baselines in both performance and efficiency. Additional analysis demonstrates its generalization across various LLMs and scalability across a wide range of computing budgets. The code will be released at https://github.com/xufangzhi/phi-Decoding, and the open-source PyPI package is coming soon.
Learning Deep Time-index Models for Time Series Forecasting
Deep learning has been actively applied to time series forecasting, leading to a deluge of new methods, belonging to the class of historical-value models. Yet, despite the attractive properties of time-index models, such as being able to model the continuous nature of underlying time series dynamics, little attention has been given to them. Indeed, while naive deep time-index models are far more expressive than the manually predefined function representations of classical time-index models, they are inadequate for forecasting, being unable to generalize to unseen time steps due to the lack of inductive bias. In this paper, we propose DeepTime, a meta-optimization framework to learn deep time-index models which overcome these limitations, yielding an efficient and accurate forecasting model. Extensive experiments on real world datasets in the long sequence time-series forecasting setting demonstrate that our approach achieves competitive results with state-of-the-art methods, and is highly efficient. Code is available at https://github.com/salesforce/DeepTime.
Searching the Search Space of Vision Transformer
Vision Transformer has shown great visual representation power in substantial vision tasks such as recognition and detection, and thus been attracting fast-growing efforts on manually designing more effective architectures. In this paper, we propose to use neural architecture search to automate this process, by searching not only the architecture but also the search space. The central idea is to gradually evolve different search dimensions guided by their E-T Error computed using a weight-sharing supernet. Moreover, we provide design guidelines of general vision transformers with extensive analysis according to the space searching process, which could promote the understanding of vision transformer. Remarkably, the searched models, named S3 (short for Searching the Search Space), from the searched space achieve superior performance to recently proposed models, such as Swin, DeiT and ViT, when evaluated on ImageNet. The effectiveness of S3 is also illustrated on object detection, semantic segmentation and visual question answering, demonstrating its generality to downstream vision and vision-language tasks. Code and models will be available at https://github.com/microsoft/Cream.
State of the art applications of deep learning within tracking and detecting marine debris: A survey
Deep learning techniques have been explored within the marine litter problem for approximately 20 years but the majority of the research has developed rapidly in the last five years. We provide an in-depth, up to date, summary and analysis of 28 of the most recent and significant contributions of deep learning in marine debris. From cross referencing the research paper results, the YOLO family significantly outperforms all other methods of object detection but there are many respected contributions to this field that have categorically agreed that a comprehensive database of underwater debris is not currently available for machine learning. Using a small dataset curated and labelled by us, we tested YOLOv5 on a binary classification task and found the accuracy was low and the rate of false positives was high; highlighting the importance of a comprehensive database. We conclude this survey with over 40 future research recommendations and open challenges.
WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection
In recent years, the abuse of a face swap technique called deepfake has raised enormous public concerns. So far, a large number of deepfake videos (known as "deepfakes") have been crafted and uploaded to the internet, calling for effective countermeasures. One promising countermeasure against deepfakes is deepfake detection. Several deepfake datasets have been released to support the training and testing of deepfake detectors, such as DeepfakeDetection and FaceForensics++. While this has greatly advanced deepfake detection, most of the real videos in these datasets are filmed with a few volunteer actors in limited scenes, and the fake videos are crafted by researchers using a few popular deepfake softwares. Detectors developed on these datasets may become less effective against real-world deepfakes on the internet. To better support detection against real-world deepfakes, in this paper, we introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet. WildDeepfake is a small dataset that can be used, in addition to existing datasets, to develop and test the effectiveness of deepfake detectors against real-world deepfakes. We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically. We also propose two (eg. 2D and 3D) Attention-based Deepfake Detection Networks (ADDNets) to leverage the attention masks on real/fake faces for improved detection. We empirically verify the effectiveness of ADDNets on both existing datasets and WildDeepfake. The dataset is available at: https://github.com/OpenTAI/wild-deepfake.
GoldFinch: High Performance RWKV/Transformer Hybrid with Linear Pre-Fill and Extreme KV-Cache Compression
We introduce GoldFinch, a hybrid Linear Attention/Transformer sequence model that uses a new technique to efficiently generate a highly compressed and reusable KV-Cache in linear time and space with respect to sequence length. GoldFinch stacks our new GOLD transformer on top of an enhanced version of the Finch (RWKV-6) architecture. We train up to 1.5B parameter class models of the Finch, Llama, and GoldFinch architectures, and find dramatically improved modeling performance relative to both Finch and Llama. Our cache size savings increase linearly with model layer count, ranging from 756-2550 times smaller than the traditional transformer cache for common sizes, enabling inference of extremely large context lengths even on limited hardware. Although autoregressive generation has O(n) time complexity per token because of attention, pre-fill computation of the entire initial cache state for a submitted context costs only O(1) time per token due to the use of a recurrent neural network (RNN) to generate this cache. We release our trained weights and training code under the Apache 2.0 license for community use.
RAT: Bridging RNN Efficiency and Attention Accuracy in Language Modeling
Transformers have become the cornerstone of modern large-scale language models; however, their dependence on softmax attention poses a major computational bottleneck, particularly in long-context settings. In this work, rather than following prevalent approaches such as linear attention (or SSMs) and local attention, we introduce an intermediate design called \rat between recurrence and attention mechanisms. It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions. By adjusting the size of the chunk, \rat enables flexible trade-offs, combining the strengths of RNN and attention. Empirically, with a chunk size of 16, the \rat layer achieves a \(7\times\) improvement in training speed with 100K token sequences and \(9\times\) in generation at 4K sequence length, while maintaining similar or sometimes even better accuracy compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves \rat with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage compared to attention, but also consistently enhances performance, for example, achieving an average 1 point gain in commonsense reasoning tasks, up to 4 points on code tasks, and a 1 point Rouge-L increase in a summarization SFT task. Code is available at https://github.com/CLAIRE-Labo/RAT
RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval
Transformer-based large Language Models (LLMs) become increasingly important in various domains. However, the quadratic time complexity of attention operation poses a significant challenge for scaling to longer contexts due to the extremely high inference latency and GPU memory consumption for caching key-value (KV) vectors. This paper proposes RetrievalAttention, a training-free approach to accelerate attention computation. To leverage the dynamic sparse property of attention, RetrievalAttention builds approximate nearest neighbor search (ANNS) indexes upon KV vectors in CPU memory and retrieves the most relevant ones via vector search during generation. Due to the out-of-distribution (OOD) between query vectors and key vectors, off-the-shelf ANNS indexes still need to scan O(N) (usually 30% of all keys) data for accurate retrieval, which fails to exploit the high sparsity. RetrievalAttention first identifies the OOD challenge of ANNS-based attention, and addresses it via an attention-aware vector search algorithm that can adapt to queries and only access 1--3% of data, thus achieving a sub-linear time complexity. RetrievalAttention greatly reduces the inference cost of long-context LLM with much lower GPU memory requirements while maintaining the model accuracy. Especially, RetrievalAttention only needs 16GB GPU memory for serving 128K tokens in LLMs with 8B parameters, which is capable of generating one token in 0.188 seconds on a single NVIDIA RTX4090 (24GB).
FlowKV: A Disaggregated Inference Framework with Low-Latency KV Cache Transfer and Load-Aware Scheduling
Disaggregated inference has become an essential framework that separates the prefill (P) and decode (D) stages in large language model inference to improve throughput. However, the KV cache transfer faces significant delays between prefill and decode nodes. The block-wise calling method and discontinuous KV cache memory allocation increase the number of calls to the transmission kernel. Additionally, existing frameworks often fix the roles of P and D nodes, leading to computational imbalances. In this paper, we propose FlowKV, a novel disaggregated inference framework, which reduces the average transmission latency of KV cache by 96%, from 0.944s to 0.053s, almost eliminating the transfer time relative to the total request latency by optimizing the KV cache transfer. FlowKV introduces the Load-Aware Scheduler for balanced request scheduling and flexible PD node allocation. This design maximizes hardware resource utilization, achieving peak system throughput across various scenarios, including normal, computational imbalance, and extreme overload conditions. Experimental results demonstrate that FlowKV significantly accelerates inference by 15.2%-48.9% on LongBench dataset compared to the baseline and supports applications with heterogeneous GPUs.
Squeeze3D: Your 3D Generation Model is Secretly an Extreme Neural Compressor
We propose Squeeze3D, a novel framework that leverages implicit prior knowledge learnt by existing pre-trained 3D generative models to compress 3D data at extremely high compression ratios. Our approach bridges the latent spaces between a pre-trained encoder and a pre-trained generation model through trainable mapping networks. Any 3D model represented as a mesh, point cloud, or a radiance field is first encoded by the pre-trained encoder and then transformed (i.e. compressed) into a highly compact latent code. This latent code can effectively be used as an extremely compressed representation of the mesh or point cloud. A mapping network transforms the compressed latent code into the latent space of a powerful generative model, which is then conditioned to recreate the original 3D model (i.e. decompression). Squeeze3D is trained entirely on generated synthetic data and does not require any 3D datasets. The Squeeze3D architecture can be flexibly used with existing pre-trained 3D encoders and existing generative models. It can flexibly support different formats, including meshes, point clouds, and radiance fields. Our experiments demonstrate that Squeeze3D achieves compression ratios of up to 2187x for textured meshes, 55x for point clouds, and 619x for radiance fields while maintaining visual quality comparable to many existing methods. Squeeze3D only incurs a small compression and decompression latency since it does not involve training object-specific networks to compress an object.
Partial Convolution Meets Visual Attention
Designing an efficient and effective neural network has remained a prominent topic in computer vision research. Depthwise onvolution (DWConv) is widely used in efficient CNNs or ViTs, but it needs frequent memory access during inference, which leads to low throughput. FasterNet attempts to introduce partial convolution (PConv) as an alternative to DWConv but compromises the accuracy due to underutilized channels. To remedy this shortcoming and consider the redundancy between feature map channels, we introduce a novel Partial visual ATtention mechanism (PAT) that can efficiently combine PConv with visual attention. Our exploration indicates that the partial attention mechanism can completely replace the full attention mechanism and reduce model parameters and FLOPs. Our PAT can derive three types of blocks: Partial Channel-Attention block (PAT_ch), Partial Spatial-Attention block (PAT_sp) and Partial Self-Attention block (PAT_sf). First, PAT_ch integrates the enhanced Gaussian channel attention mechanism to infuse global distribution information into the untouched channels of PConv. Second, we introduce the spatial-wise attention to the MLP layer to further improve model accuracy. Finally, we replace PAT_ch in the last stage with the self-attention mechanism to extend the global receptive field. Building upon PAT, we propose a novel hybrid network family, named PATNet, which achieves superior top-1 accuracy and inference speed compared to FasterNet on ImageNet-1K classification and excel in both detection and segmentation on the COCO dataset. Particularly, our PATNet-T2 achieves 1.3% higher accuracy than FasterNet-T2, while exhibiting 25% higher GPU throughput and 24% lower CPU latency.
Tevatron 2.0: Unified Document Retrieval Toolkit across Scale, Language, and Modality
Recent advancements in large language models (LLMs) have driven interest in billion-scale retrieval models with strong generalization across retrieval tasks and languages. Additionally, progress in large vision-language models has created new opportunities for multimodal retrieval. In response, we have updated the Tevatron toolkit, introducing a unified pipeline that enables researchers to explore retriever models at different scales, across multiple languages, and with various modalities. This demo paper highlights the toolkit's key features, bridging academia and industry by supporting efficient training, inference, and evaluation of neural retrievers. We showcase a unified dense retriever achieving strong multilingual and multimodal effectiveness, and conduct a cross-modality zero-shot study to demonstrate its research potential. Alongside, we release OmniEmbed, to the best of our knowledge, the first embedding model that unifies text, image document, video, and audio retrieval, serving as a baseline for future research.
Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates
In this paper, we describe a phenomenon, which we named "super-convergence", where neural networks can be trained an order of magnitude faster than with standard training methods. The existence of super-convergence is relevant to understanding why deep networks generalize well. One of the key elements of super-convergence is training with one learning rate cycle and a large maximum learning rate. A primary insight that allows super-convergence training is that large learning rates regularize the training, hence requiring a reduction of all other forms of regularization in order to preserve an optimal regularization balance. We also derive a simplification of the Hessian Free optimization method to compute an estimate of the optimal learning rate. Experiments demonstrate super-convergence for Cifar-10/100, MNIST and Imagenet datasets, and resnet, wide-resnet, densenet, and inception architectures. In addition, we show that super-convergence provides a greater boost in performance relative to standard training when the amount of labeled training data is limited. The architectures and code to replicate the figures in this paper are available at github.com/lnsmith54/super-convergence. See http://www.fast.ai/2018/04/30/dawnbench-fastai/ for an application of super-convergence to win the DAWNBench challenge (see https://dawn.cs.stanford.edu/benchmark/).
Training Long-Context LLMs Efficiently via Chunk-wise Optimization
While long-context large language models (LLMs) exhibit remarkable document processing capabilities, their prohibitively high training costs often hinder customized applications. To mitigate this issue, we propose Sequential Chunk-wise Optimization (SeCO), a memory-efficient training paradigm that partitions lengthy inputs into manageable chunks. Each chunk independently constructs its computational graph and performs localized backpropagation, ensuring that only one chunk's forward activations are stored in memory. Building on SeCO, we further introduce Sparse Chunk-wise Optimization (SpaCO), which reduces computational overhead by selectively propagating gradients to specific chunks and incorporates a carefully designed compensation factor to ensure unbiased gradient estimation. SpaCO decouples the computational cost of backpropagation from the context length, enabling training time to gradually converge to inference time as sequences become longer. Implemented as lightweight training wrappers, both SeCO and SpaCO offer substantial practical benefits. For example, when fine-tuning an 8B model with LoRA on a single RTX 3090 GPU, SeCO expands maximum sequence length from 1K to 16K tokens, while SpaCO demonstrates accelerated training speed -- achieving up to 3x faster than SeCO under the same experimental setup. These innovations provide new insights into optimizing long-context models, making them more accessible for practical applications. We have open-sourced the code at https://github.com/wenhaoli-xmu/seco{here}.
FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores
Convolution models with long filters have demonstrated state-of-the-art reasoning abilities in many long-sequence tasks but lag behind the most optimized Transformers in wall-clock time. A major bottleneck is the Fast Fourier Transform (FFT)--which allows long convolutions to run in O(N logN) time in sequence length N but has poor hardware utilization. In this paper, we study how to optimize the FFT convolution. We find two key bottlenecks: the FFT does not effectively use specialized matrix multiply units, and it incurs expensive I/O between layers of the memory hierarchy. In response, we propose FlashFFTConv. FlashFFTConv uses a matrix decomposition that computes the FFT using matrix multiply units and enables kernel fusion for long sequences, reducing I/O. We also present two sparse convolution algorithms--1) partial convolutions and 2) frequency-sparse convolutions--which can be implemented simply by skipping blocks in the matrix decomposition, enabling further opportunities for memory and compute savings. FlashFFTConv speeds up exact FFT convolutions by up to 7.93times over PyTorch and achieves up to 4.4times speedup end-to-end. Given the same compute budget, FlashFFTConv allows Hyena-GPT-s to achieve 2.3 points better perplexity on the PILE and M2-BERT-base to achieve 3.3 points higher GLUE score--matching models with twice the parameter count. FlashFFTConv also achieves 96.1% accuracy on Path-512, a high-resolution vision task where no model had previously achieved better than 50%. Furthermore, partial convolutions enable longer-sequence models--yielding the first DNA model that can process the longest human genes (2.3M base pairs)--and frequency-sparse convolutions speed up pretrained models while maintaining or improving model quality.
SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths
Speculative decoding reduces the inference latency of a target large language model via utilizing a smaller and faster draft model. Its performance depends on a hyperparameter K -- the candidate length, i.e., the number of candidate tokens for the target model to verify in each round. However, previous methods often use simple heuristics to choose K, which may result in sub-optimal performance. We study the choice of the candidate length K and formulate it as a Markov Decision Process. We theoretically show that the optimal policy of this Markov decision process takes the form of a threshold policy, i.e., the current speculation should stop and be verified when the probability of getting a rejection exceeds a threshold value. Motivated by this theory, we propose SpecDec++, an enhanced version of speculative decoding that adaptively determines the candidate length on the fly. We augment the draft model with a trained acceptance prediction head to predict the conditional acceptance probability of the candidate tokens. SpecDec++ will stop the current speculation when the predicted probability that at least one token gets rejected exceeds a threshold. We implement SpecDec++ and apply it to the llama-2-chat 7B & 70B model pair. Our adaptive method achieves a 2.04x speedup on the Alpaca dataset (an additional 7.2% improvement over the baseline speculative decoding). On the GSM8K and HumanEval datasets, our method achieves a 2.26x speedup (9.4% improvement) and 2.23x speedup (11.1% improvement), respectively.
Relaxed Attention for Transformer Models
The powerful modeling capabilities of all-attention-based transformer architectures often cause overfitting and - for natural language processing tasks - lead to an implicitly learned internal language model in the autoregressive transformer decoder complicating the integration of external language models. In this paper, we explore relaxed attention, a simple and easy-to-implement smoothing of the attention weights, yielding a two-fold improvement to the general transformer architecture: First, relaxed attention provides regularization when applied to the self-attention layers in the encoder. Second, we show that it naturally supports the integration of an external language model as it suppresses the implicitly learned internal language model by relaxing the cross attention in the decoder. We demonstrate the benefit of relaxed attention across several tasks with clear improvement in combination with recent benchmark approaches. Specifically, we exceed the former state-of-the-art performance of 26.90% word error rate on the largest public lip-reading LRS3 benchmark with a word error rate of 26.31%, as well as we achieve a top-performing BLEU score of 37.67 on the IWSLT14 (DErightarrowEN) machine translation task without external language models and virtually no additional model parameters. Code and models will be made publicly available.
Context-aware Biases for Length Extrapolation
Transformers' ability to generalize to longer sequences than they have been trained on, known as length extrapolation, degrades as sequence length increases. Most of Relative Positional Encoding (RPE) methods address this problem by either adding constant linear biases or learning general biases, lacking the ability to specialize for different sequences. In this work, inspired by ALiBi, we propose Context-aware Biases for Length Extrapolation (Cable), that learns token-specific biases for each head in decoder-based transformers. Cable learns adaptive, context-aware biases, overcoming the limitations of fixed patterns by adding dynamic biases specific to each token in the sequence. Results show that when tested on a sequence length of 1024, a GPT-3 Medium (334M parameters) with our positional encoding, trained on a sequence length of 512, achieves better perplexity (-0.65) than a similar network with sinusoidal positional encoding trained on a sequence length of 1024. This is achieved with 48% lower memory usage, and only 3.5% higher training time. Furthermore, our method notably improves the extrapolation ability of existing RPE methods on the Edu-FineWeb10B and WikiText-103 datasets. Code is available at: https://github.com/axiomlab/Cable
Generalization Beyond Data Imbalance: A Controlled Study on CLIP for Transferable Insights
Severe data imbalance naturally exists among web-scale vision-language datasets. Despite this, we find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning, and demonstrates significant effectiveness in learning generalizable representations. With an aim to investigate the reasons behind this finding, we conduct controlled experiments to study various underlying factors, and reveal that CLIP's pretext task forms a dynamic classification problem wherein only a subset of classes is present in training. This isolates the bias from dominant classes and implicitly balances the learning signal. Furthermore, the robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts, which are inaccessible to supervised learning. Our study not only uncovers the mechanisms behind CLIP's generalizability beyond data imbalance but also provides transferable insights for the research community. The findings are validated in both supervised and self-supervised learning, enabling models trained on imbalanced data to achieve CLIP-level performance on diverse recognition tasks. Code and data are available at: https://github.com/CVMI-Lab/clip-beyond-tail.
Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time
Large language models (LLMs) with hundreds of billions of parameters have sparked a new wave of exciting AI applications. However, they are computationally expensive at inference time. Sparsity is a natural approach to reduce this cost, but existing methods either require costly retraining, have to forgo LLM's in-context learning ability, or do not yield wall-clock time speedup on modern hardware. We hypothesize that contextual sparsity, which are small, input-dependent sets of attention heads and MLP parameters that yield approximately the same output as the dense model for a given input, can address these issues. We show that contextual sparsity exists, that it can be accurately predicted, and that we can exploit it to speed up LLM inference in wall-clock time without compromising LLM's quality or in-context learning ability. Based on these insights, we propose DejaVu, a system that uses a low-cost algorithm to predict contextual sparsity on the fly given inputs to each layer, along with an asynchronous and hardware-aware implementation that speeds up LLM inference. We validate that DejaVu can reduce the inference latency of OPT-175B by over 2X compared to the state-of-the-art FasterTransformer, and over 6X compared to the widely used Hugging Face implementation, without compromising model quality. The code is available at https://github.com/FMInference/DejaVu.
A Survey on Deep Neural Network Pruning-Taxonomy, Comparison, Analysis, and Recommendations
Modern deep neural networks, particularly recent large language models, come with massive model sizes that require significant computational and storage resources. To enable the deployment of modern models on resource-constrained environments and accelerate inference time, researchers have increasingly explored pruning techniques as a popular research direction in neural network compression. However, there is a dearth of up-to-date comprehensive review papers on pruning. To address this issue, in this survey, we provide a comprehensive review of existing research works on deep neural network pruning in a taxonomy of 1) universal/specific speedup, 2) when to prune, 3) how to prune, and 4) fusion of pruning and other compression techniques. We then provide a thorough comparative analysis of seven pairs of contrast settings for pruning (e.g., unstructured/structured) and explore emerging topics, including post-training pruning, different levels of supervision for pruning, and broader applications (e.g., adversarial robustness) to shed light on the commonalities and differences of existing methods and lay the foundation for further method development. To facilitate future research, we build a curated collection of datasets, networks, and evaluations on different applications. Finally, we provide some valuable recommendations on selecting pruning methods and prospect promising research directions. We build a repository at https://github.com/hrcheng1066/awesome-pruning.
Deep Layer Aggregation
Visual recognition requires rich representations that span levels from low to high, scales from small to large, and resolutions from fine to coarse. Even with the depth of features in a convolutional network, a layer in isolation is not enough: compounding and aggregating these representations improves inference of what and where. Architectural efforts are exploring many dimensions for network backbones, designing deeper or wider architectures, but how to best aggregate layers and blocks across a network deserves further attention. Although skip connections have been incorporated to combine layers, these connections have been "shallow" themselves, and only fuse by simple, one-step operations. We augment standard architectures with deeper aggregation to better fuse information across layers. Our deep layer aggregation structures iteratively and hierarchically merge the feature hierarchy to make networks with better accuracy and fewer parameters. Experiments across architectures and tasks show that deep layer aggregation improves recognition and resolution compared to existing branching and merging schemes. The code is at https://github.com/ucbdrive/dla.
Efficient LLM Training and Serving with Heterogeneous Context Sharding among Attention Heads
Existing LLM training and inference frameworks struggle in boosting efficiency with sparsity while maintaining the integrity of context and model architecture. Inspired by the sharding concept in database and the fact that attention parallelizes over heads on accelerators, we propose Sparsely-Sharded (S2) Attention, an attention algorithm that allocates heterogeneous context partitions for different attention heads to divide and conquer. S2-Attention enforces each attention head to only attend to a partition of contexts following a strided sparsity pattern, while the full context is preserved as the union of all the shards. As attention heads are processed in separate thread blocks, the context reduction for each head can thus produce end-to-end speed-up and memory reduction. At inference, LLMs trained with S2-Attention can then take the KV cache reduction as free meals with guaranteed model quality preserve. In experiments, we show S2-Attentioncan provide as much as (1) 25.3X wall-clock attention speed-up over FlashAttention-2, resulting in 6X reduction in end-to-end training time and 10X inference latency, (2) on-par model training quality compared to default attention, (3)perfect needle retrieval accuracy over 32K context window. On top of the algorithm, we build DKernel, an LLM training and inference kernel library that allows users to customize sparsity patterns for their own models. We open-sourced DKerneland make it compatible with Megatron, Pytorch, and vLLM.
Neurocache: Efficient Vector Retrieval for Long-range Language Modeling
This paper introduces Neurocache, an approach to extend the effective context size of large language models (LLMs) using an external vector cache to store its past states. Like recent vector retrieval approaches, Neurocache uses an efficient k-nearest-neighbor (kNN) algorithm to retrieve relevant past states and incorporate them into the attention process. Neurocache improves upon previous methods by (1) storing compressed states, which reduces cache size; (2) performing a single retrieval operation per token which increases inference speed; and (3) extending the retrieval window to neighboring states, which improves both language modeling and downstream task accuracy. Our experiments show the effectiveness of Neurocache both for models trained from scratch and for pre-trained models such as Llama2-7B and Mistral-7B when enhanced with the cache mechanism. We also compare Neurocache with text retrieval methods and show improvements in single-document question-answering and few-shot learning tasks. We made the source code available under: https://github.com/alisafaya/neurocache
FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision
Attention, as a core layer of the ubiquitous Transformer architecture, is the bottleneck for large language models and long-context applications. FlashAttention elaborated an approach to speed up attention on GPUs through minimizing memory reads/writes. However, it has yet to take advantage of new capabilities present in recent hardware, with FlashAttention-2 achieving only 35% utilization on the H100 GPU. We develop three main techniques to speed up attention on Hopper GPUs: exploiting asynchrony of the Tensor Cores and TMA to (1) overlap overall computation and data movement via warp-specialization and (2) interleave block-wise matmul and softmax operations, and (3) block quantization and incoherent processing that leverages hardware support for FP8 low-precision. We demonstrate that our method, FlashAttention-3, achieves speedup on H100 GPUs by 1.5-2.0times with FP16 reaching up to 740 TFLOPs/s (75% utilization), and with FP8 reaching close to 1.2 PFLOPs/s. We validate that FP8 FlashAttention-3 achieves 2.6times lower numerical error than a baseline FP8 attention.
Area is all you need: repeatable elements make stronger adversarial attacks
Over the last decade, deep neural networks have achieved state of the art in computer vision tasks. These models, however, are susceptible to unusual inputs, known as adversarial examples, that cause them to misclassify or otherwise fail to detect objects. Here, we provide evidence that the increasing success of adversarial attacks is primarily due to increasing their size. We then demonstrate a method for generating the largest possible adversarial patch by building a adversarial pattern out of repeatable elements. This approach achieves a new state of the art in evading detection by YOLOv2 and YOLOv3. Finally, we present an experiment that fails to replicate the prior success of several attacks published in this field, and end with some comments on testing and reproducibility.
Context-Aware Sentence/Passage Term Importance Estimation For First Stage Retrieval
Term frequency is a common method for identifying the importance of a term in a query or document. But it is a weak signal, especially when the frequency distribution is flat, such as in long queries or short documents where the text is of sentence/passage-length. This paper proposes a Deep Contextualized Term Weighting framework that learns to map BERT's contextualized text representations to context-aware term weights for sentences and passages. When applied to passages, DeepCT-Index produces term weights that can be stored in an ordinary inverted index for passage retrieval. When applied to query text, DeepCT-Query generates a weighted bag-of-words query. Both types of term weight can be used directly by typical first-stage retrieval algorithms. This is novel because most deep neural network based ranking models have higher computational costs, and thus are restricted to later-stage rankers. Experiments on four datasets demonstrate that DeepCT's deep contextualized text understanding greatly improves the accuracy of first-stage retrieval algorithms.
Finedeep: Mitigating Sparse Activation in Dense LLMs via Multi-Layer Fine-Grained Experts
Large language models have demonstrated exceptional performance across a wide range of tasks. However, dense models usually suffer from sparse activation, where many activation values tend towards zero (i.e., being inactivated). We argue that this could restrict the efficient exploration of model representation space. To mitigate this issue, we propose Finedeep, a deep-layered fine-grained expert architecture for dense models. Our framework partitions the feed-forward neural network layers of traditional dense models into small experts, arranges them across multiple sub-layers. A novel routing mechanism is proposed to determine each expert's contribution. We conduct extensive experiments across various model sizes, demonstrating that our approach significantly outperforms traditional dense architectures in terms of perplexity and benchmark performance while maintaining a comparable number of parameters and floating-point operations. Moreover, we find that Finedeep achieves optimal results when balancing depth and width, specifically by adjusting the number of expert sub-layers and the number of experts per sub-layer. Empirical results confirm that Finedeep effectively alleviates sparse activation and efficiently utilizes representation capacity in dense models.
Efficient Reasoning for LLMs through Speculative Chain-of-Thought
Large reasoning language models such as OpenAI-o1 and Deepseek-R1 have recently attracted widespread attention due to their impressive task-solving abilities. However, the enormous model size and the generation of lengthy thought chains introduce significant reasoning costs and response latency. Existing methods for efficient reasoning mainly focus on reducing the number of model parameters or shortening the chain-of-thought length. In this paper, we introduce Speculative Chain-of-Thought (SCoT), which reduces reasoning latency from another perspective by accelerated average reasoning speed through large and small model collaboration. SCoT conducts thought-level drafting using a lightweight draft model. Then it selects the best CoT draft and corrects the error cases with the target model. The proposed thinking behavior alignment improves the efficiency of drafting and the draft selection strategy maintains the prediction accuracy for complex problems. Experimental results on GSM8K, MATH, GaoKao, CollegeMath and Olympiad datasets show that SCoT reduces reasoning latency by 48\%sim66\% for Deepseek-R1-Distill-Qwen-32B while achieving near-target-model-level performance. Our code is available at https://github.com/Jikai0Wang/Speculative_CoT.
GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative Decoding
Speculative decoding is a relatively new decoding framework that leverages small and efficient draft models to reduce the latency of LLMs. In this study, we introduce GliDe and CaPE, two low-hassle modifications to vanilla speculative decoding to further improve the decoding speed of a frozen LLM. Specifically, GliDe is a modified draft model architecture that reuses the cached keys and values from the target LLM, while CaPE is a proposal expansion method that uses the draft model's confidence scores to help select additional candidate tokens for verification. Extensive experiments on different benchmarks demonstrate that our proposed GliDe draft model significantly reduces the expected decoding latency. Additional evaluation using walltime reveals that GliDe can accelerate Vicuna models up to 2.17x and further extend the improvement to 2.61x with CaPE. We will release our code, data, and the trained draft models.
Sinkformers: Transformers with Doubly Stochastic Attention
Attention based models such as Transformers involve pairwise interactions between data points, modeled with a learnable attention matrix. Importantly, this attention matrix is normalized with the SoftMax operator, which makes it row-wise stochastic. In this paper, we propose instead to use Sinkhorn's algorithm to make attention matrices doubly stochastic. We call the resulting model a Sinkformer. We show that the row-wise stochastic attention matrices in classical Transformers get close to doubly stochastic matrices as the number of epochs increases, justifying the use of Sinkhorn normalization as an informative prior. On the theoretical side, we show that, unlike the SoftMax operation, this normalization makes it possible to understand the iterations of self-attention modules as a discretized gradient-flow for the Wasserstein metric. We also show in the infinite number of samples limit that, when rescaling both attention matrices and depth, Sinkformers operate a heat diffusion. On the experimental side, we show that Sinkformers enhance model accuracy in vision and natural language processing tasks. In particular, on 3D shapes classification, Sinkformers lead to a significant improvement.
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
Recognizing arbitrary multi-character text in unconstrained natural photographs is a hard problem. In this paper, we address an equally hard sub-problem in this domain viz. recognizing arbitrary multi-digit numbers from Street View imagery. Traditional approaches to solve this problem typically separate out the localization, segmentation, and recognition steps. In this paper we propose a unified approach that integrates these three steps via the use of a deep convolutional neural network that operates directly on the image pixels. We employ the DistBelief implementation of deep neural networks in order to train large, distributed neural networks on high quality images. We find that the performance of this approach increases with the depth of the convolutional network, with the best performance occurring in the deepest architecture we trained, with eleven hidden layers. We evaluate this approach on the publicly available SVHN dataset and achieve over 96% accuracy in recognizing complete street numbers. We show that on a per-digit recognition task, we improve upon the state-of-the-art, achieving 97.84% accuracy. We also evaluate this approach on an even more challenging dataset generated from Street View imagery containing several tens of millions of street number annotations and achieve over 90% accuracy. To further explore the applicability of the proposed system to broader text recognition tasks, we apply it to synthetic distorted text from reCAPTCHA. reCAPTCHA is one of the most secure reverse turing tests that uses distorted text to distinguish humans from bots. We report a 99.8% accuracy on the hardest category of reCAPTCHA. Our evaluations on both tasks indicate that at specific operating thresholds, the performance of the proposed system is comparable to, and in some cases exceeds, that of human operators.
FutureFill: Fast Generation from Convolutional Sequence Models
We address the challenge of efficient auto-regressive generation in sequence prediction models by introducing FutureFill - a method for fast generation that applies to any sequence prediction algorithm based on convolutional operators. Our approach reduces the generation time requirement from quadratic to quasilinear relative to the context length. Additionally, FutureFill requires a prefill cache sized only by the number of tokens generated, which is smaller than the cache requirements for standard convolutional and attention-based models. We validate our theoretical findings with experimental evidence demonstrating correctness and efficiency gains in a synthetic generation task.
p-MoD: Building Mixture-of-Depths MLLMs via Progressive Ratio Decay
Despite the remarkable performance of multimodal large language models (MLLMs) across diverse tasks, the substantial training and inference costs impede their advancement. The majority of computation stems from the overwhelming volume of vision tokens processed by the transformer decoder. In this paper, we propose to build efficient MLLMs by leveraging the Mixture-of-Depths (MoD) mechanism, where each transformer decoder layer selects essential vision tokens to process while skipping redundant ones. However, integrating MoD into MLLMs is non-trivial. To address the challenges of training and inference stability as well as limited training data, we adapt the MoD module with two novel designs: tanh-gated weight normalization (TanhNorm) and symmetric token reweighting (STRing). Moreover, we observe that vision tokens exhibit higher redundancy in deeper layer and thus design a progressive ratio decay (PRD) strategy, which gradually reduces the token retention ratio layer by layer, employing a shifted cosine schedule. This crucial design fully unleashes the potential of MoD, significantly boosting the efficiency and performance of our models. To validate the effectiveness of our approach, we conduct extensive experiments with two baseline models across 14 benchmarks. Our model, p-MoD, matches or even surpasses the performance of the baseline models, with only 55.6% TFLOPs and 53.8% KV cache storage during inference, and 77.7% GPU hours during training.
Blockwise Parallel Decoding for Deep Autoregressive Models
Deep autoregressive sequence-to-sequence models have demonstrated impressive performance across a wide variety of tasks in recent years. While common architecture classes such as recurrent, convolutional, and self-attention networks make different trade-offs between the amount of computation needed per layer and the length of the critical path at training time, generation still remains an inherently sequential process. To overcome this limitation, we propose a novel blockwise parallel decoding scheme in which we make predictions for multiple time steps in parallel then back off to the longest prefix validated by a scoring model. This allows for substantial theoretical improvements in generation speed when applied to architectures that can process output sequences in parallel. We verify our approach empirically through a series of experiments using state-of-the-art self-attention models for machine translation and image super-resolution, achieving iteration reductions of up to 2x over a baseline greedy decoder with no loss in quality, or up to 7x in exchange for a slight decrease in performance. In terms of wall-clock time, our fastest models exhibit real-time speedups of up to 4x over standard greedy decoding.
NFT1000: A Visual Text Dataset For Non-Fungible Token Retrieval
With the rise of 'Metaverse' and 'Web3.0', NFT ( Non-Fungible Token ) has emerged as a kind of pivotal digital asset, garnering significant attention. By the end of November 2023, more than 1.4 billion NFT tokens have been minted across various blockchain platforms. To effectively locate a satisfactory NFT token, conducting searches within the extensive array of NFT data is essential. The challenge in NFT retrieval is heightened due to the high degree of similarity among different NFT tokens, in terms of regional and semantic aspects. Achieving accurate and efficient retrieval within the large-scale, highly similar NFT data presents a formidable challenge for both the academic and industrial communities. In this paper, we will introduce a dataset named 'NFT Top1000 Visual Text Dataset'(henceforth, NFT1000), containing 7.56 million image-text pairs, and being collected from 1000 most famous PFP NFT collections by sales volume on the Ethereum blockchain. Based on the dataset, we test the CLIP (Contrastive Language-Image Pretraining) models as a baseline. Additionally, we also propose a concept of Comprehensive Variance Index (CVI in short), which is a robust metric designed to assess the similarity and retrieval difficulty of visual-text pairs data.
SqueezeAttention: 2D Management of KV-Cache in LLM Inference via Layer-wise Optimal Budget
Optimizing the Key-Value (KV) cache of the Large Language Model (LLM) has been considered critical to saving the cost of inference. Most of the existing KV-cache compression algorithms attempted to sparsify the sequence of tokens by taking advantage of the different importance of tokens. In this work, we found that by identifying the importance of attention layers, we could optimize the KV-cache jointly from two dimensions. Based on our observations regarding layer-wise importance in inference, we propose SqueezeAttention to precisely optimize the allocation of KV-cache budget among layers on-the-fly and then incorporate three representative token sparsification algorithms to compress the KV-cache for each layer with its very own budget. By optimizing the KV-cache from both sequence's and layer's dimensions, SqueezeAttention achieves around 30% to 70% of the memory reductions and up to 2.2 times of throughput improvements in a wide range of LLMs and benchmarks. The code is available at https://github.com/hetailang/SqueezeAttention.
Contrastive Deep Supervision
The success of deep learning is usually accompanied by the growth in neural network depth. However, the traditional training method only supervises the neural network at its last layer and propagates the supervision layer-by-layer, which leads to hardship in optimizing the intermediate layers. Recently, deep supervision has been proposed to add auxiliary classifiers to the intermediate layers of deep neural networks. By optimizing these auxiliary classifiers with the supervised task loss, the supervision can be applied to the shallow layers directly. However, deep supervision conflicts with the well-known observation that the shallow layers learn low-level features instead of task-biased high-level semantic features. To address this issue, this paper proposes a novel training framework named Contrastive Deep Supervision, which supervises the intermediate layers with augmentation-based contrastive learning. Experimental results on nine popular datasets with eleven models demonstrate its effects on general image classification, fine-grained image classification and object detection in supervised learning, semi-supervised learning and knowledge distillation. Codes have been released in Github.
Boosting Lossless Speculative Decoding via Feature Sampling and Partial Alignment Distillation
Lossless speculative decoding accelerates target large language model (LLM) inference by employing a lightweight draft model for generating tree-structured candidates, which are subsequently verified in parallel by the target LLM. Currently, effective approaches leverage feature-level rather than token-level autoregression within the draft model to facilitate more straightforward predictions and enhanced knowledge distillation. In this paper, we reassess these approaches and propose FSPAD (Feature Sampling and Partial Alignment Distillation for Lossless Speculative Decoding), which introduces two straightforward and effective components within the existing framework to boost lossless speculative decoding. Firstly, FSPAD utilizes token embeddings to sample features of the target LLM in high-dimensional space before feeding them into the draft model, due to the inherent uncertainty of the features preventing the draft model from obtaining the specific token output by the target LLM. Secondly, FSPAD introduces partial alignment distillation to weaken the draft model's connection between features and logits, aiming to reduce the conflict between feature alignment and logit confidence during training. Our experiments include both greedy and non-greedy decoding on the largest and smallest models from the Vicuna and LLaMA3-Instruct series, as well as tasks in multi-turn conversation, translation, summarization, question answering, mathematical reasoning, and retrieval-augmented generation. The results show that FSPAD outperforms the state-of-the-art method across all the aforementioned tasks and target LLMs.
Non-deep Networks
Depth is the hallmark of deep neural networks. But more depth means more sequential computation and higher latency. This begs the question -- is it possible to build high-performing "non-deep" neural networks? We show that it is. To do so, we use parallel subnetworks instead of stacking one layer after another. This helps effectively reduce depth while maintaining high performance. By utilizing parallel substructures, we show, for the first time, that a network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet, 96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a low-depth (12) backbone can achieve an AP of 48% on MS-COCO. We analyze the scaling rules for our design and show how to increase performance without changing the network's depth. Finally, we provide a proof of concept for how non-deep networks could be used to build low-latency recognition systems. Code is available at https://github.com/imankgoyal/NonDeepNetworks.
MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention
The computational challenges of Large Language Model (LLM) inference remain a significant barrier to their widespread deployment, especially as prompt lengths continue to increase. Due to the quadratic complexity of the attention computation, it takes 30 minutes for an 8B LLM to process a prompt of 1M tokens (i.e., the pre-filling stage) on a single A100 GPU. Existing methods for speeding up prefilling often fail to maintain acceptable accuracy or efficiency when applied to long-context LLMs. To address this gap, we introduce MInference (Milliontokens Inference), a sparse calculation method designed to accelerate pre-filling of long-sequence processing. Specifically, we identify three unique patterns in long-context attention matrices-the A-shape, Vertical-Slash, and Block-Sparsethat can be leveraged for efficient sparse computation on GPUs. We determine the optimal pattern for each attention head offline and dynamically build sparse indices based on the assigned pattern during inference. With the pattern and sparse indices, we perform efficient sparse attention calculations via our optimized GPU kernels to significantly reduce the latency in the pre-filling stage of long-context LLMs. Our proposed technique can be directly applied to existing LLMs without any modifications to the pre-training setup or additional fine-tuning. By evaluating on a wide range of downstream tasks, including InfiniteBench, RULER, PG-19, and Needle In A Haystack, and models including LLaMA-3-1M, GLM4-1M, Yi-200K, Phi-3-128K, and Qwen2-128K, we demonstrate that MInference effectively reduces inference latency by up to 10x for pre-filling on an A100, while maintaining accuracy. Our code is available at https://aka.ms/MInference.
Ethicist: Targeted Training Data Extraction Through Loss Smoothed Soft Prompting and Calibrated Confidence Estimation
Large pre-trained language models achieve impressive results across many tasks. However, recent works point out that pre-trained language models may memorize a considerable fraction of their training data, leading to the privacy risk of information leakage. In this paper, we propose a method named Ethicist for targeted training data extraction through loss smoothed soft prompting and calibrated confidence estimation, investigating how to recover the suffix in the training data when given a prefix. To elicit memorization in the attacked model, we tune soft prompt embeddings while keeping the model fixed. We further propose a smoothing loss that smooths the loss distribution of the suffix tokens to make it easier to sample the correct suffix. In order to select the most probable suffix from a collection of sampled suffixes and estimate the prediction confidence, we propose a calibrated confidence estimation method, which normalizes the confidence of the generated suffixes with a local estimation. We show that Ethicist significantly improves the extraction performance on a recently proposed public benchmark. We also investigate several factors influencing the data extraction performance, including decoding strategy, model scale, prefix length, and suffix length. Our code is available at https://github.com/thu-coai/Targeted-Data-Extraction.
SageAttention3: Microscaling FP4 Attention for Inference and An Exploration of 8-Bit Training
The efficiency of attention is important due to its quadratic time complexity. We enhance the efficiency of attention through two key contributions: First, we leverage the new FP4 Tensor Cores in Blackwell GPUs to accelerate attention computation. Our implementation achieves 1038 TOPS on RTX5090, which is a 5x speedup over the fastest FlashAttention on RTX5090. Experiments show that our FP4 attention can accelerate inference of various models in a plug-and-play way. Second, we pioneer low-bit attention to training tasks. Existing low-bit attention works like FlashAttention3 and SageAttention focus only on inference. However, the efficiency of training large models is also important. To explore whether low-bit attention can be effectively applied to training tasks, we design an accurate and efficient 8-bit attention for both forward and backward propagation. Experiments indicate that 8-bit attention achieves lossless performance in fine-tuning tasks but exhibits slower convergence in pretraining tasks. The code will be available at https://github.com/thu-ml/SageAttention.
Correlation and Navigation in the Vocabulary Key Representation Space of Language Models
Language model (LM) decoding is based on the next-token prediction (NTP) probability distribution. For neural LMs (e.g., Transformer-based), NTP distribution is essentially a softmax-regularized dot product between an encoded input context (query) and fixed vocabulary representations (keys). In this paper, we study the effect of the key distribution on the NTP distribution, with a focus on whether the similarity between keys will trigger spurious correlations in NTP. Through knowledge-probing tasks, we show that in the NTP distribution, the few top-ranked tokens are typically accurate. However, the middle-ranked prediction is highly biased towards the tokens that are distributionally (not necessarily semantically) similar to these top ones. For instance, if "P" is predicted as the top-1 token, "A"-"Z" will all be ranked high in NTP, no matter whether they can lead to correct decoding results. This hurts the sampling diversity and makes the sampling of correct, long-tail results hopeless and noisy. We attempt to alleviate this issue via a novel in-context method that iteratively pushes the query representation away from explored regions. Specifically, we include the explored decoding results in the context and prompt the LM to generate something else, which encourages the LM to produce a query representation that has small dot products with explored keys. Experiments on knowledge-probing tasks show that our method leads to efficient navigation away from explored keys to correct new keys. We further extend our method to open-ended and chain-of-thought (for reasoning) generation. Experiment results show that ICN contributes to better generation diversity and improved self-consistency voting performance. Finally, we discuss potential training issues caused by the fixed key space together with the challenges and possible ways to address them in future research.
Online Speculative Decoding
Speculative decoding is a pivotal technique to accelerate the inference of large language models (LLMs) by employing a smaller draft model to predict the target model's outputs. However, its efficacy can be limited due to the low predictive accuracy of the draft model, particularly when faced with diverse text inputs and a significant capability gap between the draft and target models. We introduce online speculative decoding (OSD) to address this challenge. The main idea is to continually update (multiple) draft model(s) on observed user query data using the abundant excess computational power in an LLM serving cluster. Given that LLM inference is memory-bounded, the surplus computational power in a typical LLM serving cluster can be repurposed for online retraining of draft models, thereby making the training cost-neutral. Since the query distribution of an LLM service is relatively simple, retraining on query distribution enables the draft model to more accurately predict the target model's outputs, particularly on data originating from query distributions. As the draft model evolves online, it aligns with the query distribution in real time, mitigating distribution shifts. We develop a prototype of online speculative decoding based on online knowledge distillation and evaluate it using both synthetic and real query data on several popular LLMs. The results show a substantial increase in the token acceptance rate by 0.1 to 0.65, which translates into 1.22x to 3.06x latency reduction.
Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference
Recent advances in large language models (LLMs) have showcased exceptional performance in long-context tasks, while facing significant inference efficiency challenges with limited GPU memory. Existing solutions first proposed the sliding-window approach to accumulate a set of historical key-value (KV) pairs for reuse, then further improvements selectively retain its subsets at each step. However, due to the sparse attention distribution across a long context, it is hard to identify and recall relevant KV pairs, as the attention is distracted by massive candidate pairs. Additionally, we found it promising to select representative tokens as probe-Query in each sliding window to effectively represent the entire context, which is an approach overlooked by existing methods. Thus, we propose ActQKV, a training-free, Activation-aware approach that dynamically determines probe-Query and leverages it to retrieve the relevant KV pairs for inference. Specifically, ActQKV monitors a token-level indicator, Activation Bias, within each context window, enabling the proper construction of probe-Query for retrieval at pre-filling stage. To accurately recall the relevant KV pairs and minimize the irrelevant ones, we design a dynamic KV cut-off mechanism guided by information density across layers at the decoding stage. Experiments on the Long-Bench and infty Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.