ViTSGMM: A Robust Semi-Supervised Image Recognition Network Using Sparse Labels
Abstract
ViTSGMM achieves top performance in semi-supervised image recognition with minimal labeled data through a hierarchical mixture density classification mechanism.
We present ViTSGMM, an image recognition network that leverages semi-supervised learning in a highly efficient manner. Existing works often rely on complex training techniques and architectures, while their generalization ability when dealing with extremely limited labeled data remains to be improved. To address these limitations, we construct a hierarchical mixture density classification decision mechanism by optimizing mutual information between feature representations and target classes, compressing redundant information while retaining crucial discriminative components. Experimental results demonstrate that our method achieves state-of-the-art performance on STL-10 and CIFAR-10/100 datasets when using negligible labeled samples. Notably, this paper also reveals a long-overlooked data leakage issue in the STL-10 dataset for semi-supervised learning tasks and removes duplicates to ensure the reliability of experimental results. Code available at https://github.com/Shu1L0n9/ViTSGMM.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper