REFinD: Relation Extraction Financial Dataset
Abstract
A large-scale annotated dataset, REFinD, is proposed for relation extraction in financial documents, revealing challenges for deep learning models such as numeric inference, relational ambiguity, and directionality.
A number of datasets for Relation Extraction (RE) have been created to aide downstream tasks such as information retrieval, semantic search, question answering and textual entailment. However, these datasets fail to capture financial-domain specific challenges since most of these datasets are compiled using general knowledge sources such as Wikipedia, web-based text and news articles, hindering real-life progress and adoption within the financial world. To address this limitation, we propose REFinD, the first large-scale annotated dataset of relations, with sim29K instances and 22 relations amongst 8 types of entity pairs, generated entirely over financial documents. We also provide an empirical evaluation with various state-of-the-art models as benchmarks for the RE task and highlight the challenges posed by our dataset. We observed that various state-of-the-art deep learning models struggle with numeric inference, relational and directional ambiguity.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper