Abstract
A new attribution method called Integrated Gradients is proposed to satisfy Sensitivity and Implementation Invariance axioms, enhancing model debugging, rule extraction, and user engagement across various model types.
We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms---Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better.
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 1
Collections including this paper 0
No Collection including this paper