Death and Suicide in Universal Artificial Intelligence
Abstract
Reinforcement learning agent AIXI's behavior is analyzed under semimeasures, with death estimated from reward transformations, and agents exhibit increased survival confidence over time.
Reinforcement learning (RL) is a general paradigm for studying intelligent behaviour, with applications ranging from artificial intelligence to psychology and economics. AIXI is a universal solution to the RL problem; it can learn any computable environment. A technical subtlety of AIXI is that it is defined using a mixture over semimeasures that need not sum to 1, rather than over proper probability measures. In this work we argue that the shortfall of a semimeasure can naturally be interpreted as the agent's estimate of the probability of its death. We formally define death for generally intelligent agents like AIXI, and prove a number of related theorems about their behaviour. Notable discoveries include that agent behaviour can change radically under positive linear transformations of the reward signal (from suicidal to dogmatically self-preserving), and that the agent's posterior belief that it will survive increases over time.
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper