File size: 16,808 Bytes
5cfbec5 60bd6b4 5cfbec5 60bd6b4 52b2691 5cfbec5 8ec6619 5cfbec5 c40edea 5cfbec5 a3ff62e 5cfbec5 60bd6b4 5cfbec5 0d1ddc8 5cfbec5 8ec6619 a3ff62e 5cfbec5 0d1ddc8 5cfbec5 8ec6619 7ef4d37 8ec6619 7ef4d37 8ec6619 e684ea3 8ec6619 5cfbec5 60bd6b4 5cfbec5 a3ff62e 5cfbec5 a3ff62e 5cfbec5 a3ff62e 5cfbec5 a3ff62e 5cfbec5 a3ff62e 5cfbec5 a3ff62e 5cfbec5 a3ff62e 5cfbec5 60bd6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
---
library_name: transformers
license: other
license_name: nvidia-open-model-license
license_link: >-
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
pipeline_tag: text-generation
language:
- en
tags:
- nvidia
- llama-3
- pytorch
base_model:
- nvidia/Llama-3.1-Minitron-4B-Width-Base
datasets:
- nvidia/Llama-Nemotron-Post-Training-Dataset
---
# Llama-3.1-Nemotron-Nano-4B-v1.1
## Model Overview

Llama-3.1-Nemotron-Nano-4B-v1.1 is a large language model (LLM) which is a derivative of [nvidia/Llama-3.1-Minitron-4B-Width-Base](https://huggingface.co/nvidia/Llama-3.1-Minitron-4B-Width-Base), which is created from Llama 3.1 8B using [our LLM compression technique](https://arxiv.org/abs/2408.11796) and offers improvements in model accuracy and efficiency. It is a reasoning model that is post trained for reasoning, human chat preferences, and tasks, such as RAG and tool calling.
Llama-3.1-Nemotron-Nano-4B-v1.1 is a model which offers a great tradeoff between model accuracy and efficiency. The model fits on a single RTX GPU and can be used locally. The model supports a context length of 128K.
This model underwent a multi-phase post-training process to enhance both its reasoning and non-reasoning capabilities. This includes a supervised fine-tuning stage for Math, Code, Reasoning, and Tool Calling as well as multiple reinforcement learning (RL) stages using Reward-aware Preference Optimization (RPO) algorithms for both chat and instruction-following. The final model checkpoint is obtained after merging the final SFT and RPO checkpoints
This model is part of the Llama Nemotron Collection. You can find the other model(s) in this family here:
- [Llama-3.3-Nemotron-Ultra-253B-v1](https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1)
- [Llama-3.3-Nemotron-Super-49B-v1](https://huggingface.co/nvidia/Llama-3.3-Nemotron-Super-49B-v1)
- [Llama-3.1-Nemotron-Nano-8B-v1](https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1)
This model is ready for commercial use.
## License/Terms of Use
GOVERNING TERMS: Your use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/). Additional Information: [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/). Built with Llama.
**Model Developer:** NVIDIA
**Model Dates:** Trained between August 2024 and May 2025
**Data Freshness:** The pretraining data has a cutoff of June 2023.
## Use Case:
Developers designing AI Agent systems, chatbots, RAG systems, and other AI-powered applications. Also suitable for typical instruction-following tasks. Balance of model accuracy and compute efficiency (the model fits on a single RTX GPU and can be used locally).
## Release Date: <br>
5/20/2025 <br>
## References
- [\[2408.11796\] LLM Pruning and Distillation in Practice: The Minitron Approach](https://arxiv.org/abs/2408.11796)
- [\[2502.00203\] Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment](https://arxiv.org/abs/2502.00203)
- [\[2505.00949\] Llama-Nemotron: Efficient Reasoning Models](https://arxiv.org/abs/2505.00949)
## Model Architecture
**Architecture Type:** Dense decoder-only Transformer model
**Network Architecture:** Llama 3.1 Minitron Width 4B Base
## Intended use
Llama-3.1-Nemotron-Nano-4B-v1.1 is a general purpose reasoning and chat model intended to be used in English and coding languages. Other non-English languages (German, French, Italian, Portuguese, Hindi, Spanish, and Thai) are also supported.
# Input:
- **Input Type:** Text
- **Input Format:** String
- **Input Parameters:** One-Dimensional (1D)
- **Other Properties Related to Input:** Context length up to 131,072 tokens
## Output:
- **Output Type:** Text
- **Output Format:** String
- **Output Parameters:** One-Dimensional (1D)
- **Other Properties Related to Output:** Context length up to 131,072 tokens
## Model Version:
1.1 (5/20/2025)
## Software Integration
- **Runtime Engine:** NeMo 24.12 <br>
- **Recommended Hardware Microarchitecture Compatibility:**
- NVIDIA Hopper
- NVIDIA Ampere
## Quick Start and Usage Recommendations:
1. Reasoning mode (ON/OFF) is controlled via the system prompt, which must be set as shown in the example below. All instructions should be contained within the user prompt
2. We recommend setting temperature to `0.6`, and Top P to `0.95` for Reasoning ON mode
3. We recommend using greedy decoding for Reasoning OFF mode
4. We have provided a list of prompts to use for evaluation for each benchmark where a specific template is required
See the snippet below for usage with Hugging Face Transformers library. Reasoning mode (ON/OFF) is controlled via system prompt. Please see the example below.
Our code requires the transformers package version to be `4.44.2` or higher.
### Example of “Reasoning On:”
```python
import torch
import transformers
model_id = "nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1"
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=32768,
temperature=0.6,
top_p=0.95,
**model_kwargs
)
# Thinking can be "on" or "off"
thinking = "on"
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
```
### Example of “Reasoning Off:”
```python
import torch
import transformers
model_id = "nvidia/Llama-3.1-Nemotron-Nano-4B-v1"
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=32768,
do_sample=False,
**model_kwargs
)
# Thinking can be "on" or "off"
thinking = "off"
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
```
For some prompts, even though thinking is disabled, the model emergently prefers to think before responding. But if desired, the users can prevent it by pre-filling the assistant response.
```python
import torch
import transformers
model_id = "nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1"
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
# Thinking can be "on" or "off"
thinking = "off"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=32768,
do_sample=False,
**model_kwargs
)
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}, {"role":"assistant", "content":"<think>\n</think>"}]))
```
## Running a vLLM Server with Tool-call Support
Llama-3.1-Nemotron-Nano-4B-v1.1 supports tool calling. This HF repo hosts a tool-callilng parser as well as a chat template in Jinja, which can be used to launch a vLLM server.
Here is a shell script example to launch a vLLM server with tool-call support. `vllm/vllm-openai:v0.6.6` or newer should support the model.
```shell
#!/bin/bash
CWD=$(pwd)
PORT=5000
git clone https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1
docker run -it --rm \
--runtime=nvidia \
--gpus all \
--shm-size=16GB \
-p ${PORT}:${PORT} \
-v ${CWD}:${CWD} \
vllm/vllm-openai:v0.6.6 \
--model $CWD/Llama-3.1-Nemotron-Nano-4B-v1.1 \
--trust-remote-code \
--seed 1 \
--host "0.0.0.0" \
--port $PORT \
--served-model-name "Llama-Nemotron-Nano-4B-v1.1" \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--gpu-memory-utilization 0.95 \
--enforce-eager \
--enable-auto-tool-choice \
--tool-parser-plugin "${CWD}/Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_toolcall_parser.py" \
--tool-call-parser "llama_nemotron_json" \
--chat-template "${CWD}/Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_generic_tool_calling.jinja"
```
Alternatively, you can use a virtual environment to launch a vLLM server like below.
```console
$ git clone https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1
$ conda create -n vllm python=3.12 -y
$ conda activate vllm
$ python -m vllm.entrypoints.openai.api_server \
--model Llama-3.1-Nemotron-Nano-4B-v1.1 \
--trust-remote-code \
--seed 1 \
--host "0.0.0.0" \
--port 5000 \
--served-model-name "Llama-Nemotron-Nano-4B-v1.1" \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--gpu-memory-utilization 0.95 \
--enforce-eager \
--enable-auto-tool-choice \
--tool-parser-plugin "Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_toolcall_parser.py" \
--tool-call-parser "llama_nemotron_json" \
--chat-template "Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_generic_tool_calling.jinja"
```
After launching a vLLM server, you can call the server with tool-call support using a Python script like below.
```python
>>> from openai import OpenAI
>>> client = OpenAI(
base_url="http://0.0.0.0:5000/v1",
api_key="dummy",
)
>>> completion = client.chat.completions.create(
model="Llama-Nemotron-Nano-4B-v1.1",
messages=[
{"role": "system", "content": "detailed thinking on"},
{"role": "user", "content": "My bill is $100. What will be the amount for 18% tip?"},
],
tools=[
{"type": "function", "function": {"name": "calculate_tip", "parameters": {"type": "object", "properties": {"bill_total": {"type": "integer", "description": "The total amount of the bill"}, "tip_percentage": {"type": "integer", "description": "The percentage of tip to be applied"}}, "required": ["bill_total", "tip_percentage"]}}},
{"type": "function", "function": {"name": "convert_currency", "parameters": {"type": "object", "properties": {"amount": {"type": "integer", "description": "The amount to be converted"}, "from_currency": {"type": "string", "description": "The currency code to convert from"}, "to_currency": {"type": "string", "description": "The currency code to convert to"}}, "required": ["from_currency", "amount", "to_currency"]}}},
],
)
>>> completion.choices[0].message.content
'<think>\nOkay, let\'s see. The user has a bill of $100 and wants to know the amount of a 18% tip. So, I need to calculate the tip amount. The available tools include calculate_tip, which requires bill_total and tip_percentage. The parameters are both integers. The bill_total is 100, and the tip percentage is 18. So, the function should multiply 100 by 18% and return 18.0. But wait, maybe the user wants the total including the tip? The question says "the amount for 18% tip," which could be interpreted as the tip amount itself. Since the function is called calculate_tip, it\'s likely that it\'s designed to compute the tip, not the total. So, using calculate_tip with bill_total=100 and tip_percentage=18 should give the correct result. The other function, convert_currency, isn\'t relevant here. So, I should call calculate_tip with those values.\n</think>\n\n'
>>> completion.choices[0].message.tool_calls
[ChatCompletionMessageToolCall(id='chatcmpl-tool-2972d86817344edc9c1e0f9cd398e999', function=Function(arguments='{"bill_total": 100, "tip_percentage": 18}', name='calculate_tip'), type='function')]
```
## Inference:
**Engine:** Transformers
**Test Hardware:**
- BF16:
- 1x RTX 50 Series GPUs
- 1x RTX 40 Series GPUs
- 1x RTX 30 Series GPUs
- 1x H100-80GB GPU
- 1x A100-80GB GPU
**Preferred/Supported] Operating System(s):** Linux <br>
## Training Datasets
A large variety of training data was used for the post-training pipeline, including manually annotated data and synthetic data.
The data for the multi-stage post-training phases for improvements in Code, Math, and Reasoning is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model.
Prompts have been sourced from either public and open corpus or synthetically generated. Responses were synthetically generated by a variety of models, with some prompts containing responses for both Reasoning On and Off modes, to train the model to distinguish between two modes.
**Data Collection for Training Datasets:** <br>
* Hybrid: Automated, Human, Synthetic <br>
**Data Labeling for Training Datasets:** <br>
* N/A <br>
## Evaluation Datasets
We used the datasets listed below to evaluate Llama-3.1-Nemotron-Nano-4B-v1.1.
**Data Collection for Evaluation Datasets:** Hybrid: Human/Synthetic
**Data Labeling for Evaluation Datasets:** Hybrid: Human/Synthetic/Automatic
## Evaluation Results
These results contain both “Reasoning On”, and “Reasoning Off”. We recommend using temperature=`0.6`, top_p=`0.95` for “Reasoning On” mode, and greedy decoding for “Reasoning Off” mode. All evaluations are done with 32k sequence length. We run the benchmarks up to 16 times and average the scores to be more accurate.
> NOTE: Where applicable, a Prompt Template will be provided. While completing benchmarks, please ensure that you are parsing for the correct output format as per the provided prompt in order to reproduce the benchmarks seen below.
### MT-Bench
| Reasoning Mode | Score |
|--------------|------------|
| Reasoning Off | 7.4 |
| Reasoning On | 8.0 |
### MATH500
| Reasoning Mode | pass@1 |
|--------------|------------|
| Reasoning Off | 71.8% |
| Reasoning On | 96.2% |
User Prompt Template:
```
"Below is a math question. I want you to reason through the steps and then give a final answer. Your final answer should be in \boxed{}.\nQuestion: {question}"
```
### AIME25
| Reasoning Mode | pass@1 |
|--------------|------------|
| Reasoning Off | 13.3% |
| Reasoning On | 46.3% |
User Prompt Template:
```
"Below is a math question. I want you to reason through the steps and then give a final answer. Your final answer should be in \boxed{}.\nQuestion: {question}"
```
### GPQA-D
| Reasoning Mode | pass@1 |
|--------------|------------|
| Reasoning Off | 33.8% |
| Reasoning On | 55.1% |
User Prompt Template:
```
"What is the correct answer to this question: {question}\nChoices:\nA. {option_A}\nB. {option_B}\nC. {option_C}\nD. {option_D}\nLet's think step by step, and put the final answer (should be a single letter A, B, C, or D) into a \boxed{}"
```
### IFEval
| Reasoning Mode | Strict:Prompt | Strict:Instruction |
|--------------|------------|------------|
| Reasoning Off | 70.1% | 78.5% |
| Reasoning On | 75.5% | 82.6% |
### BFCL v2 Live
| Reasoning Mode | Score |
|--------------|------------|
| Reasoning Off | 63.6% |
| Reasoning On | 67.9% |
User Prompt Template:
```
<AVAILABLE_TOOLS>{functions}</AVAILABLE_TOOLS>
{user_prompt}
```
### MBPP 0-shot
| Reasoning Mode | pass@1 |
|--------------|------------|
| Reasoning Off | 61.9% |
| Reasoning On | 85.8% |
User Prompt Template:
````
You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
@@ Instruction
Here is the given problem and test examples:
{prompt}
Please use the python programming language to solve this problem.
Please make sure that your code includes the functions from the test samples and that the input and output formats of these functions match the test samples.
Please return all completed codes in one code block.
This code block should be in the following format:
```python
# Your codes here
```
````
## Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](explainability.md), [Bias](bias.md), [Safety & Security](safety.md), and [Privacy](privacy.md) Subcards.
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). |