--- license: apache-2.0 library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 datasets: - nthakur/multilingual-ultrafeedback-binarized-dpo-v0.1 - nthakur/multilingual-distilabel-intel-orca-dpo-pairs-v0.1 - nthakur/multilingual-truthy-dpo-pairs-v0.1 - nthakur/GSM8KInstruct-Parallel-instruct-dpo-v0.1 model-index: - name: Mistral-7B-Instruct-v0.2-multilingual-dpo-v1.0-v2 results: [] --- # Mistral-7B-Instruct-v0.2-multilingual-dpo-v1.0-v2 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the nthakur/multilingual-ultrafeedback-binarized-dpo-v0.1, the nthakur/multilingual-distilabel-intel-orca-dpo-pairs-v0.1, the nthakur/multilingual-truthy-dpo-pairs-v0.1 and the nthakur/GSM8KInstruct-Parallel-instruct-dpo-v0.1 datasets. It achieves the following results on the evaluation set: - Loss: 0.1324 - Rewards/chosen: -2.6738 - Rewards/rejected: -12.2394 - Rewards/accuracies: 0.9377 - Rewards/margins: 9.5656 - Logps/rejected: -1515.8665 - Logps/chosen: -607.0774 - Logits/rejected: 0.4952 - Logits/chosen: 0.3030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2695 | 0.1361 | 500 | 0.2653 | -0.4399 | -4.5379 | 0.8680 | 4.0981 | -745.7153 | -383.6803 | -1.3998 | -1.5327 | | 0.4349 | 0.2723 | 1000 | 0.3152 | -2.6018 | -7.1212 | 0.8515 | 4.5195 | -1004.0471 | -599.8698 | 4.1724 | 4.7868 | | 0.531 | 0.4084 | 1500 | 0.4873 | -2.4253 | -8.0681 | 0.7855 | 5.6428 | -1098.7278 | -582.2241 | -1.5195 | -1.6538 | | 0.1681 | 0.5446 | 2000 | 0.2003 | -3.9555 | -13.1169 | 0.9089 | 9.1613 | -1603.6106 | -735.2488 | -0.1888 | -0.3742 | | 0.1778 | 0.6807 | 2500 | 0.2004 | -3.4745 | -11.9768 | 0.9242 | 8.5023 | -1489.6012 | -687.1464 | -0.7118 | -0.9608 | | 0.1342 | 0.8169 | 3000 | 0.1452 | -3.0928 | -12.8477 | 0.9340 | 9.7549 | -1576.6960 | -648.9738 | 0.6727 | 0.5428 | | 0.1252 | 0.9530 | 3500 | 0.1328 | -2.7014 | -12.3976 | 0.9383 | 9.6962 | -1531.6849 | -609.8344 | 0.5002 | 0.3026 | ### Framework versions - PEFT 0.7.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1