Gemma-3 Quantized
Collection
12 items
•
Updated
Quantized version of google/gemma-3-27b-it.
This model was obtained by quantizing the weights of google/gemma-3-27b-it to INT8 data type, ready for inference with vLLM >= 0.8.0.
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor
# Define model name once
model_name = "RedHatAI/gemma-3-27b-it-quantized.w8a8"
# Load image and processor
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
# Build multimodal prompt
chat = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
{"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)
# Initialize model
llm = LLM(model=model_name, trust_remote_code=True)
# Run inference
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
# Display result
print("RESPONSE:", outputs[0].outputs[0].text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
This model was created with llm-compressor by running the code snippet below:
import base64
from io import BytesIO
import torch
from datasets import load_dataset
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
# Load model.
model_id = "google/gemma-3-27b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Oneshot arguments
DATASET_ID = "neuralmagic/calibration"
DATASET_SPLIT = {"LLM": "train[:1024]"}
NUM_CALIBRATION_SAMPLES = 1024
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42)
dampening_frac=0.05
def data_collator(batch):
assert len(batch) == 1, "Only batch size of 1 is supported for calibration"
item = batch[0]
collated = {}
import torch
for key, value in item.items():
if isinstance(value, torch.Tensor):
collated[key] = value.unsqueeze(0)
elif isinstance(value, list) and isinstance(value[0][0], int):
# Handle tokenized inputs like input_ids, attention_mask
collated[key] = torch.tensor(value)
elif isinstance(value, list) and isinstance(value[0][0], float):
# Handle possible float sequences
collated[key] = torch.tensor(value)
elif isinstance(value, list) and isinstance(value[0][0], torch.Tensor):
# Handle batched image data (e.g., pixel_values as [C, H, W])
collated[key] = torch.stack(value) # -> [1, C, H, W]
elif isinstance(value, torch.Tensor):
collated[key] = value
else:
print(f"[WARN] Unrecognized type in collator for key={key}, type={type(value)}")
return collated
# Recipe
recipe = [
GPTQModifier(
targets="Linear",
ignore=["re:.*lm_head.*", "re:.*embed_tokens.*", "re:vision_tower.*", "re:multi_modal_projector.*"],
sequential_update=True,
sequential_targets=["Gemma3DecoderLayer"],
dampening_frac=dampening_frac,
)
]
SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w8a8"
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True,
data_collator=data_collator,
output_dir=SAVE_DIR
)
The model was evaluated using lm_evaluation_harness for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
--tasks openllm \
--batch_size auto
Category | Metric | google/gemma-3-27b-it | RedHatAI/gemma-3-27b-it-quantized.w8a8 | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC Challenge | 72.53% | 70.82% | 97.65% |
GSM8K | 92.12% | 85.75% | 93.09% | |
Hellaswag | 85.78% | 85.05% | 99.15% | |
MMLU | 77.53% | 76.37% | 98.50% | |
Truthfulqa (mc2) | 62.20% | 61.73% | 99.24% | |
Winogrande | 79.40% | 79.72% | 100.40% | |
Average Score | 78.26% | 76.57% | 97.84% | |
Vision Evals | MMMU (val) | 50.89% | 50.11% | 98.47% |
ChartQA | 72.16% | 71.72% | 99.39% | |
Average Score | 61.53% | 60.92% | 98.93% |