File size: 2,564 Bytes
aba9483 d3e2300 aba9483 d3e2300 29827d7 aba9483 c075982 aba9483 d3e2300 ff16f81 3d2138b b3787bf 4b7f4a7 b3787bf aba9483 a97a4b5 aba9483 a97a4b5 ea829c4 aba9483 a97a4b5 aba9483 a97a4b5 aba9483 a97a4b5 aba9483 a97a4b5 aba9483 a97a4b5 aba9483 ea829c4 ff16f81 3d2138b ea829c4 ff16f81 ea829c4 ff16f81 c075982 ff16f81 ea829c4 aba9483 4b7f4a7 a97a4b5 aba9483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: mit
base_model: BAAI/bge-reranker-v2-m3
tags:
- generated_from_trainer
- transformers
library_name: sentence-transformers
pipeline_tag: text-ranking
model-index:
- name: bge_reranker
results: []
inference:
parameters:
normalize: true
widget:
- inputs:
source_sentence: "Hello, world!"
sentences:
- "Hello! How are you?"
- "Cats and dogs"
- "The sky is blue"
---
# Reranker model
- [Reranker model](#reranker-model)
- [Brief information](#brief-information)
- [Supporting architectures](#supporting-architectures)
- [Example usage](#example-usage)
- [HuggingFace Inference Endpoints](#huggingface-inference-endpoints)
- [Local inference](#local-inference)
## Brief information
This repository contains reranker model ```bge-reranker-v2-m3``` which you can run on HuggingFace Inference Endpoints.
- Base model: [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with no any fine tune.
- Commit: [953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e](https://huggingface.co/BAAI/bge-reranker-v2-m3/commit/953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e)
**More details please refer to the [repo of bse model](https://huggingface.co/BAAI/bge-reranker-v2-m3).**
## Supporting architectures
- Apple Silicon MPS
- Nvidia GPU
- HuggingFace Inference Endpoints (AWS)
- CPU (Intel Sapphire Rapids, 4 vCPU, 8 Gb)
- GPU (Nvidia T4)
- Infernia 2 (2 cores, 32 Gb RAM)
## Example usage
### HuggingFace Inference Endpoints
⚠️ When you will deploy this model in HuggingFace Inference endpoints plese select ```Settings``` -> ```Advanced settings``` -> ```Task```: ```Sentence Similarity```
```bash
curl "https://xxxxxxx.us-east-1.aws.endpoints.huggingface.cloud" \
-X POST \
-H "Accept: application/json" \
-H "Authorization: Bearer hf_yyyyyyy" \
-H "Content-Type: application/json" \
-d '{
"inputs": {
"source_sentence": "Hello, world!",
"sentences": [
"Hello! How are you?",
"Cats and dogs",
"The sky is blue"
]
},
"normalize": true
}'
```
### Local inference
```python
from FlagEmbedding import FlagReranker
class RerankRequest(BaseModel):
query: str
documents: list[str]
# Prepare array
arr = []
for element in request.documents:
arr.append([request.query, element])
print(arr)
# Inference
reranker = FlagReranker('netandreus/bge-reranker-v2-m3', use_fp16=True)
scores = reranker.compute_score(arr, normalize=True)
if not isinstance(scores, list):
scores = [scores]
print(scores) # [-8.1875, 5.26171875]
``` |