|
from optimum.onnxruntime import ORTModelForFeatureExtraction |
|
from transformers import AutoTokenizer, Pipeline |
|
import torch.nn.functional as F |
|
import torch |
|
from typing import Any, Dict, List |
|
|
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
class SentenceEmbeddingPipeline(Pipeline): |
|
def _sanitize_parameters(self, **kwargs): |
|
|
|
preprocess_kwargs = {} |
|
return preprocess_kwargs, {}, {} |
|
|
|
def preprocess(self, inputs): |
|
encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt') |
|
return encoded_inputs |
|
|
|
def _forward(self, model_inputs): |
|
outputs = self.model(**model_inputs) |
|
return {"outputs": outputs, "attention_mask": model_inputs["attention_mask"]} |
|
|
|
def postprocess(self, model_outputs): |
|
|
|
sentence_embeddings = mean_pooling(model_outputs["outputs"], model_outputs['attention_mask']) |
|
|
|
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) |
|
return sentence_embeddings |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="./"): |
|
|
|
model = ORTModelForFeatureExtraction.from_pretrained( |
|
path,file_name="model_optimized.onnx", |
|
|
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
|
|
|
|
self.pl = SentenceEmbeddingPipeline(model=model, tokenizer=tokenizer) |
|
|
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
if parameters is not None: |
|
prediction = self.pl(inputs, **parameters) |
|
else: |
|
prediction = self.pl(inputs) |
|
|
|
return { |
|
"embeddings": prediction.cpu().tolist() |
|
} |
|
|