import torch import joblib import librosa import numpy as np from torch import nn from transformers import AutoModel class VoiceRecognitionModel(nn.Module): def __init__(self, num_classes): super().__init__() # Your model architecture here (same as training) self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) # ... rest of your architecture def forward(self, x): # Your forward pass return x def extract_features(file_path, max_pad_len=174): # Your feature extraction code pass def pipeline(): # This will be called when someone uses your model model = VoiceRecognitionModel(num_classes=7) # Adjust based on your classes model.load_state_dict(torch.load("voice_recognition_model.pth")) model.eval() label_encoder = joblib.load("label_encoder.joblib") feature_params = joblib.load("feature_params.joblib") return model, label_encoder, feature_params