--- language: en tags: - audio - voice-recognition - security - pytorch license: apache-2.0 datasets: - your-dataset-name --- # Voice Recognition Security Model This model provides secure voice recognition with transfer learning and data augmentation. ## Usage ```python from transformers import AutoModel import torch import joblib import librosa import numpy as np # Load model model = AutoModel.from_pretrained("your-username/your-model-name") label_encoder = joblib.load("label_encoder.joblib") feature_params = joblib.load("feature_params.joblib") # Prediction function def predict_voice(file_path): # Extract features (same as during training) features = extract_features(file_path, feature_params['max_pad_len']) features = torch.tensor(features).unsqueeze(0).unsqueeze(0) # Predict with torch.no_grad(): outputs = model(features) _, predicted = torch.max(outputs, 1) return label_encoder.inverse_transform([predicted.item()])[0]