import joblib | |
from sklearn.preprocessing import LabelEncoder | |
# Assuming you have the dataset path (same as in your training code) | |
#dataset_path = "path/to/your/dataset" # Update this | |
# Initialize label encoder (same as in VoiceDataset) | |
label_encoder = LabelEncoder() | |
# Extract labels from dataset folders | |
labels = [] | |
for user_folder in os.listdir(dataset_path): | |
if os.path.isdir(os.path.join(dataset_path, user_folder)): | |
labels.append(user_folder) | |
# Fit the label encoder | |
label_encoder.fit(labels) | |
# Save to file | |
joblib.dump(label_encoder, "label_encoder.joblib") | |
print(f"Label encoder saved with classes: {label_encoder.classes_}") |