vikhyatk's picture
Upload HfMoondream
e079813 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Literal
from torchao import quantize_
from torchao.quantization import int4_weight_only
def gelu_approx(x):
return F.gelu(x, approximate="tanh")
@dataclass
class LinearWeights:
weight: torch.Tensor
bias: torch.Tensor
def linear(x: torch.Tensor, w: LinearWeights) -> torch.Tensor:
return F.linear(x, w.weight, w.bias)
def dequantize_tensor(W_q, scale, zero, orig_shape, dtype=torch.bfloat16):
_step = W_q.shape[0]
W_r = torch.empty([2 * _step, W_q.shape[1]], dtype=dtype, device=W_q.device)
W_r[:_step] = (W_q & 0b11110000) >> 4
W_r[_step:] = W_q & 0b00001111
W_r.sub_(zero).mul_(scale)
return W_r.reshape(orig_shape)
class QuantizedLinear(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
dtype: torch.dtype,
):
# TODO: Take group_size as an input instead of hardcoding it here.
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.ParameterDict(
{
"packed": nn.Parameter(
torch.empty(
out_features * in_features // (128 * 2), 128, dtype=torch.uint8
),
requires_grad=False,
),
"scale": nn.Parameter(
torch.empty(out_features * in_features // 128, 1),
requires_grad=False,
),
"zero_point": nn.Parameter(
torch.empty(out_features * in_features // 128, 1),
requires_grad=False,
),
}
)
self.bias = nn.Parameter(torch.empty(out_features), requires_grad=False)
self.unpacked = False
def unpack(self):
if self.unpacked:
return
self.weight = nn.Parameter(
dequantize_tensor(
self.weight["packed"],
self.weight["scale"],
self.weight["zero_point"],
(self.out_features, self.in_features),
torch.bfloat16,
)
)
with torch.device("meta"):
self.linear = nn.Linear(
self.in_features, self.out_features, dtype=torch.bfloat16
)
self.linear.weight = self.weight
self.linear.bias = nn.Parameter(
self.bias.to(torch.bfloat16), requires_grad=False
)
del self.weight, self.bias
quantize_(self, int4_weight_only(group_size=128))
self.unpacked = True
torch.cuda.empty_cache()
def forward(self, x: torch.Tensor) -> torch.Tensor:
if not self.unpacked:
self.unpack()
return self.linear(x)
@dataclass
class LayerNormWeights:
weight: torch.Tensor
bias: torch.Tensor
def layer_norm(x: torch.Tensor, w: LayerNormWeights) -> torch.Tensor:
return F.layer_norm(x, w.bias.shape, w.weight, w.bias)
@dataclass
class MLPWeights:
fc1: LinearWeights
fc2: LinearWeights
act: Literal["gelu_approx"] = "gelu_approx"
def mlp(x: torch.Tensor, w: MLPWeights) -> torch.Tensor:
x = w.fc1(x)
x = gelu_approx(x)
x = w.fc2(x)
return x
@dataclass
class AttentionWeights:
qkv: LinearWeights
proj: LinearWeights
def attn(x: torch.Tensor, w: AttentionWeights, n_heads: int) -> torch.Tensor:
bsz, q_len, d_model = x.shape
head_dim = d_model // n_heads
q, k, v = [
t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
for t in linear(x, w.qkv).chunk(3, dim=-1)
]
out = F.scaled_dot_product_attention(q, k, v)
out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
out = linear(out, w.proj)
return out