File size: 1,520 Bytes
08f294f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
library_name: transformers
license: gemma
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
extra_gated_heading: Access CodeGemma on Hugging Face
extra_gated_prompt: To access CodeGemma on Hugging Face, you’re required to review
  and agree to Google’s usage license. To do this, please ensure you’re logged-in
  to Hugging Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
widget:
- text: '<start_of_turn>user Write a Python function to calculate the nth fibonacci
    number.<end_of_turn> <start_of_turn>model

    '
inference:
  parameters:
    max_new_tokens: 200
tags:
- mlx
base_model: google/codegemma-1.1-7b-it
---

# mlx-community/codegemma-1.1-7b-it-6bit

The Model [mlx-community/codegemma-1.1-7b-it-6bit](https://huggingface.co/mlx-community/codegemma-1.1-7b-it-6bit) was converted to MLX format from [google/codegemma-1.1-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it) using mlx-lm version **0.24.1**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/codegemma-1.1-7b-it-6bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```