--- language: - en - ja library_name: transformers pipeline_tag: text-generation license: - llama3.3 - gemma model_type: llama datasets: - tokyotech-llm/lmsys-chat-1m-synth - tokyotech-llm/swallow-magpie-ultra-v0.1 - tokyotech-llm/swallow-gemma-magpie-v0.1 - lmsys/lmsys-chat-1m - argilla/magpie-ultra-v0.1 base_model: tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4 tags: - mlx --- # mlx-community/Llama-3.3-Swallow-70B-Instruct-v0.4-8bit The Model [mlx-community/Llama-3.3-Swallow-70B-Instruct-v0.4-8bit](https://huggingface.co/mlx-community/Llama-3.3-Swallow-70B-Instruct-v0.4-8bit) was converted to MLX format from [tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4) using mlx-lm version **0.21.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Llama-3.3-Swallow-70B-Instruct-v0.4-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```