File size: 11,129 Bytes
50bf69a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import argparse
import json
import math
import re
from io import BytesIO
import numpy as np
from datasets import load_dataset
from PIL.Image import Image
from PIL.Image import open as open_img
from tqdm import tqdm
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.modeling_utils import PreTrainedModel
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from transformers.processing_utils import ProcessorMixin
INSTRUCTION_LOCALIZATION: str = "Localize an element on the GUI image according to my instructions and output a click position as Click(x, y) with x num pixels from the left edge and y num pixels from the top edge."
INSTRUCTION_LOCALIZATION_TOOLCALL: str = "Localize an element on the GUI image according to my instructions and output a click position. You must output a valid JSON format."
def load_screenspot(dataset_id: str, subset: str = "test"):
dataset = load_dataset(dataset_id)
return dataset[subset]
def l1(dx: float, dy: float) -> float:
"""Return L1 length of a vector"""
return abs(dx) + abs(dy)
def l2(dx: float, dy: float) -> float:
"""Return L2 length of a vector"""
return (dx**2 + dy**2) ** 0.5
def point_to_rectangle_dist(x: float, y: float, rectangle: tuple, distance_type="L2"):
"""Compute the distance of a predicted point to the closest edge of the bbox. If the point is in the bbox, then return 0."""
x1, y1, x2, y2 = rectangle # x1,y1 is top-left, x2,y2 is bottom-right
# Check if the point is inside the rectangle
if x1 <= x <= x2 and y1 <= y <= y2:
return 0
# Calculate the closest point on the rectangle
closest_x = max(x1, min(x, x2))
closest_y = max(y1, min(y, y2))
# Calculate the distance
dx = x - closest_x
dy = y - closest_y
if distance_type == "L1":
return l1(dx, dy)
elif distance_type == "L2":
return l2(dx, dy)
else:
raise ValueError("Invalid distance type. Use 'L1' or 'L2'.")
def is_in_bbox(bbox: tuple, x: float, y: float) -> bool:
"""Check if a point is inside a bounding box."""
x_top_left, y_top_left, x_bottom_right, y_bottom_right = bbox
return x_top_left <= x <= x_bottom_right and y_top_left <= y <= y_bottom_right
def assemble_message(image, instruction, use_tool_call: bool = True):
system_message = {
"role": "system",
"content": '[{"name": "click_action", "description": "Click at specific coordinates on the screen.", "parameters": {"additionalProperties": false, "description": "Click at specific coordinates on the screen.", "properties": {"action": {"const": "click", "default": "click", "title": "Action", "type": "string"}, "x": {"description": "The x coordinate, number of pixels from the left edge.", "title": "X", "type": "integer"}, "y": {"description": "The y coordinate, number of pixels from the top edge.", "title": "Y", "type": "integer"}}, "required": ["action", "x", "y"], "title": "ClickAction", "type": "object"}, "strict": true}]',
}
user_message = {
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{
"type": "text",
"text": f"{INSTRUCTION_LOCALIZATION_TOOLCALL if use_tool_call else INSTRUCTION_LOCALIZATION}\n{instruction}",
},
],
}
messages = [system_message, user_message] if use_tool_call else [user_message]
return messages
def do_smart_resize(image: Image, image_processor: ProcessorMixin) -> tuple[Image, int, int]:
"""Do a QWEN2.5-VL smart resize using parameters of an image-processor"""
resized_height, resized_width = smart_resize(
image.height,
image.width,
factor=image_processor.patch_size * image_processor.merge_size,
min_pixels=image_processor.min_pixels,
max_pixels=image_processor.max_pixels,
)
return image.resize(size=(resized_width, resized_height), resample=None), resized_height, resized_width
def inference(
model: PreTrainedModel, processor: ProcessorMixin, dataset, smart_resize: bool = True, use_toolcall: bool = True
):
"""Gather raw inference results from the model"""
results = []
for i, sample in enumerate(tqdm(dataset, "running inference requests")):
bbox = sample["bbox"]
instruction = sample["instruction"]
image = sample["image"] # this seems to be a pnd , maybe jpg artifacts cause the difference?
image_shape_raw = (image.height, image.width)
message = assemble_message(image=image, instruction=instruction)
# Preparation for inference
if smart_resize:
image, resized_height, resized_width = do_smart_resize(
image=image, image_processor=processor.image_processor
)
else:
resized_height, resized_width = image_shape_raw
text = processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
# compress to JPEG, which is needed for highest possible performance
buffer = BytesIO()
image.convert("RGB").save(buffer, format="JPEG", quality=90)
image = open_img(buffer)
inputs = processor(
text=[text],
images=image,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# print(output_text)
if use_toolcall:
try:
content = json.loads(output_text[0])
prediction_raw = f"Click({content['arguments']['x']}, {content['arguments']['y']})"
except Exception as e:
print(f"Error parsing tool call, using message content instead if available: {repr(e)}")
prediction_raw = output_text[0]
else:
prediction_raw = output_text[0]
results.append(
{
"sample_id": i,
"ground_truth": tuple(bbox),
"prediction_raw": prediction_raw,
"image_shape_raw": image_shape_raw,
"img_shape_processed": (resized_height, resized_width),
}
)
return results
def get_sample_result(result: dict):
"""Postprocess a inference result and compute metrics for this sample."""
raw_height, raw_width = result["image_shape_raw"]
height, width = result["img_shape_processed"]
has_resized_image = height != raw_height or width != raw_width
try:
bbox = result["ground_truth"]
prediction_raw = result["prediction_raw"]
match = re.match(r"Click\((\d+),\s*(\d+)\)", prediction_raw)
assert match is not None
predicted_x = float(match.group(1)) / width
predicted_y = float(match.group(2)) / height
except Exception as e:
sample_metric = {
"sample_id": result["sample_id"],
"has_correct_format": False,
"has_resized_image": has_resized_image,
"click_in_box": False,
"click_l1_dist_to_bbox": 2, # Longest possible L1 distance in the unit square
"click_l2_dist_to_bbox": math.sqrt(2), # Longest possible L2 distance in the unit square
}
sample_metric = {
"sample_id": result["sample_id"],
"has_correct_format": True,
"has_resized_image": has_resized_image,
"click_in_box": True if is_in_bbox(bbox, x=predicted_x, y=predicted_y) else False,
"click_l1_dist_to_bbox": point_to_rectangle_dist(
predicted_x, predicted_y, bbox, "L1"
), # Longest possible L1 distance in the unit square
"click_l2_dist_to_bbox": point_to_rectangle_dist(
predicted_x, predicted_y, bbox, "L2"
), # Longest possible L2 distance in the unit square
}
return sample_metric
def aggregate_metrics(sample_metrics):
"""Aggregate per-sample metrics into metrics for the entire dataset."""
aggregated_metrics = {}
aggregated_metrics["click_accuracy"] = np.mean([r["click_in_box"] for r in sample_metrics])
for threshold in [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]:
aggregated_metrics[f"click_accuracy_p{threshold}"] = np.mean(
[r["click_l2_dist_to_bbox"] < threshold for r in sample_metrics]
)
aggregated_metrics["avg_click_l1_dist_to_bbox"] = np.mean([r["click_l1_dist_to_bbox"] for r in sample_metrics])
aggregated_metrics["avg_click_l2_dist_to_bbox"] = np.mean([r["click_l2_dist_to_bbox"] for r in sample_metrics])
aggregated_metrics["format_accuracy"] = np.mean([r["has_correct_format"] for r in sample_metrics])
aggregated_metrics["has_resized_image"] = np.mean([r["has_resized_image"] for r in sample_metrics])
return aggregated_metrics
def evaluate_results(results: list[dict]):
"""Do evaluate based on the raw model outputs."""
per_sample_metrics = []
for result in results:
metric_dict = get_sample_result(result)
per_sample_metrics.append(metric_dict)
aggregated = aggregate_metrics(per_sample_metrics)
return aggregated
def main(
model_id: str = "Hcompany/Holo1-3B",
dataset_id: str = "rootsautomation/ScreenSpot",
outfile: str = "results.json",
use_toolcall: bool = True,
):
model = AutoModelForImageTextToText.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
dataset = load_screenspot(dataset_id)
results = inference(model.cuda(), processor, dataset, use_toolcall=use_toolcall)
metrics = evaluate_results(results)
with open(outfile, "w") as fp:
json.dump(metrics, fp)
for metric, value in metrics.items():
print(f"{metric}:\t{value}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the main function with model and dataset IDs.")
parser.add_argument(
"--model_id",
type=str,
default="Hcompany/Holo1-3B",
help="The identifier for the model to use (default: Hcompany/Holo1-3B)",
)
parser.add_argument(
"--dataset_id",
type=str,
default="rootsautomation/ScreenSpot",
help="The identifier for the dataset to use (default: rootsautomation/ScreenSpot)",
)
parser.add_argument(
"--outfile",
type=str,
default="result.json",
help="Output json-file containing the aggregated metrics.",
)
parser.add_argument(
"--use_toolcall",
type=bool,
default=True,
help="Enable or disable tool call prompting",
)
args = parser.parse_args()
main(model_id=args.model_id, dataset_id=args.dataset_id, outfile=args.outfile, use_toolcall=args.use_toolcall) |