mginoben commited on
Commit
f4ac26e
·
1 Parent(s): 646254f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -1,3 +1,67 @@
1
  ---
2
- license: other
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: roberta-tagalog-profanity-classifier
12
+ results: []
13
  ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-tagalog-profanity-classifier
19
+
20
+ This model is a fine-tuned version of [jcblaise/roberta-tagalog-base](https://huggingface.co/jcblaise/roberta-tagalog-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2897
23
+ - Accuracy: 0.8855
24
+ - Precision: 0.8864
25
+ - Recall: 0.9126
26
+ - F1: 0.8993
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | No log | 1.0 | 174 | 0.3082 | 0.8790 | 0.8900 | 0.8946 | 0.8923 |
58
+ | No log | 2.0 | 348 | 0.2861 | 0.8848 | 0.8902 | 0.9062 | 0.8981 |
59
+ | 0.2991 | 3.0 | 522 | 0.2897 | 0.8855 | 0.8864 | 0.9126 | 0.8993 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.28.0
65
+ - Pytorch 2.0.1+cu118
66
+ - Datasets 2.12.0
67
+ - Tokenizers 0.13.3