mehmetkeremturkcan commited on
Commit
6857092
·
verified ·
1 Parent(s): 5570f26

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - Lightricks/LTX-Video
4
+ library_name: diffusers
5
+ ---
6
+
7
+
8
+ # Suturing World Model (LTX-Video, t2v)
9
+
10
+ <p align="center">
11
+ <img src="https://github.com/mkturkcan/suturingmodels/blob/main/static/images/lora_sample.jpg?raw=true" />
12
+ </p>
13
+
14
+
15
+ This repository hosts the fine-tuned LTX-Video text-to-video (t2v) diffusion model specialized for generating realistic robotic surgical suturing videos, capturing fine-grained sub-stitch actions including needle positioning, targeting, driving, and withdrawal. The model can differentiate between ideal and non-ideal surgical techniques, making it suitable for applications in surgical training, skill evaluation, and autonomous surgical system development.
16
+
17
+ ## Model Details
18
+
19
+ - **Base Model**: LTX-Video
20
+ - **Resolution**: 768×512 pixels (Adjustable)
21
+ - **Frame Length**: 49 frames per generated video (Adjustable)
22
+ - **Fine-tuning Method**: Low-Rank Adaptation (LoRA)
23
+ - **Data Source**: Annotated laparoscopic surgery exercise videos (∼2,000 clips)
24
+
25
+ ## Usage Example
26
+
27
+ ```python
28
+ import torch
29
+ from diffusers import LTXPipeline
30
+ from diffusers.utils import export_to_video
31
+
32
+ pipe = LTXPipeline.from_pretrained(
33
+ "Lightricks/LTX-Video", torch_dtype=torch.bfloat16
34
+ ).to("cuda")
35
+ pipe.load_lora_weights("mehmetkeremturkcan/SuturingWorldModel-LTX-T2V", weight_name="pytorch_lora_weights.safetensors", adapter_name="ltxv-lora")
36
+ pipe.set_adapters(["ltxv-lora"], [1.])
37
+
38
+ for i in range(10):
39
+ video = pipe("suturingv2 A needledrivingnonideal clip, generated from a backhand task.", height=512,
40
+ width=768,
41
+ num_frames=49,
42
+ num_inference_steps=30,).frames[0]
43
+ export_to_video(video, "ltx_lora_t2v_{}.mp4".format(str(i)), fps=8)
44
+ ```
45
+
46
+ ## Applications
47
+ - **Surgical Training**: Generate demonstrations of both ideal and non-ideal surgical techniques for training purposes.
48
+ - **Skill Evaluation**: Assess surgical skills by comparing actual procedures against model-generated standards.
49
+ - **Robotic Automation**: Inform autonomous surgical robotic systems for real-time guidance and procedure automation.
50
+
51
+ ## Quantitative Performance
52
+ | Metric | Performance |
53
+ |-------------------------|---------------|
54
+ | L2 Reconstruction Loss | 0.32576 |
55
+ | Inference Time | ~6.1 seconds per video |
56
+
57
+ ## Future Directions
58
+ Further improvements will focus on increasing model robustness, expanding the dataset diversity, and enhancing real-time applicability to robotic surgical scenarios.
59
+
60
+ ## Citation
61
+ Please cite our work if you find this model useful:
62
+
63
+ ```bibtex
64
+ @article{turkcan2024suturing,
65
+ title={Towards Suturing World Models: Learning Predictive Models for Robotic Surgical Tasks},
66
+ author={Turkcan, Mehmet Kerem and Ballo, Mattia and Filicori, Filippo and Kostic, Zoran},
67
+ journal={arXiv preprint arXiv:2024},
68
+ year={2024}
69
+ }
70
+ ```