File size: 26,840 Bytes
04dc2c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import types
import inspect
from typing import Callable, Dict, List, Optional, Union, Tuple

import numpy as np
import torch
from transformers import T5EncoderModel, T5TokenizerFast

from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput
from diffusers.loaders import FromSingleFileMixin
from diffusers.pipelines.ltx.pipeline_ltx_image2video import LTXImageToVideoPipeline
from diffusers.models.autoencoders import AutoencoderKLLTXVideo
from diffusers.models.transformers import LTXVideoTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.ltx.pipeline_output import LTXPipelineOutput
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers.transformer_ltx import apply_rotary_emb

import torch.nn.functional as F

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

def forward_with_stg(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
    
        hidden_states_ptb = hidden_states[2:]
        encoder_hidden_states_ptb = encoder_hidden_states[2:]
    
        batch_size = hidden_states.size(0)
        norm_hidden_states = self.norm1(hidden_states)

        num_ada_params = self.scale_shift_table.shape[0]
        ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
        norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa

        attn_hidden_states = self.attn1(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=None,
            image_rotary_emb=image_rotary_emb,
        )
        hidden_states = hidden_states + attn_hidden_states * gate_msa

        attn_hidden_states = self.attn2(
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            image_rotary_emb=None,
            attention_mask=encoder_attention_mask,
        )
        hidden_states = hidden_states + attn_hidden_states
        norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp) + shift_mlp

        ff_output = self.ff(norm_hidden_states)
        hidden_states = hidden_states + ff_output * gate_mlp

        hidden_states[2:] = hidden_states_ptb
        encoder_hidden_states[2:] = encoder_hidden_states_ptb
    
        return hidden_states

class STGLTXVideoAttentionProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        
        hidden_states_uncond, hidden_states_text, hidden_states_perturb = hidden_states.chunk(3)
        hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_text])
        
        emb_sin, emb_cos = image_rotary_emb
        emb_sin_uncond, emb_sin_text, emb_sin_perturb = emb_sin.chunk(3)
        emb_cos_uncond, emb_cos_text, emb_cos_perturb = emb_cos.chunk(3)
        emb_sin_org = torch.cat([emb_sin_uncond, emb_sin_text])
        emb_cos_org = torch.cat([emb_cos_uncond, emb_cos_text])
        
        image_rotary_emb_org = (emb_sin_org, emb_cos_org)
        image_rotary_emb_perturb = (emb_sin_perturb, emb_cos_perturb)
        
        #----------------Original Path----------------#
        assert encoder_hidden_states is None
        batch_size, sequence_length, _ = (
            hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if encoder_hidden_states is None:
            encoder_hidden_states_org = hidden_states_org

        query_org = attn.to_q(hidden_states_org)
        key_org = attn.to_k(encoder_hidden_states_org)
        value_org = attn.to_v(encoder_hidden_states_org)

        query_org = attn.norm_q(query_org)
        key_org = attn.norm_k(key_org)

        if image_rotary_emb is not None:
            query_org = apply_rotary_emb(query_org, image_rotary_emb_org)
            key_org = apply_rotary_emb(key_org, image_rotary_emb_org)

        query_org = query_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        key_org = key_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        value_org = value_org.unflatten(2, (attn.heads, -1)).transpose(1, 2)

        hidden_states_org = F.scaled_dot_product_attention(
            query_org, key_org, value_org, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states_org = hidden_states_org.transpose(1, 2).flatten(2, 3)
        hidden_states_org = hidden_states_org.to(query_org.dtype)

        hidden_states_org = attn.to_out[0](hidden_states_org)
        hidden_states_org = attn.to_out[1](hidden_states_org)
        #----------------------------------------------#
        #--------------Perturbation Path---------------#
        batch_size, sequence_length, _ = hidden_states_perturb.shape 

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if encoder_hidden_states is None:
            encoder_hidden_states_perturb = hidden_states_perturb

        query_perturb = attn.to_q(hidden_states_perturb)
        key_perturb = attn.to_k(encoder_hidden_states_perturb)
        value_perturb = attn.to_v(encoder_hidden_states_perturb)

        query_perturb = attn.norm_q(query_perturb)
        key_perturb = attn.norm_k(key_perturb)

        if image_rotary_emb is not None:
            query_perturb = apply_rotary_emb(query_perturb, image_rotary_emb_perturb)
            key_perturb = apply_rotary_emb(key_perturb, image_rotary_emb_perturb)

        query_perturb = query_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        key_perturb = key_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)
        value_perturb = value_perturb.unflatten(2, (attn.heads, -1)).transpose(1, 2)

        hidden_states_perturb = value_perturb
        
        hidden_states_perturb = hidden_states_perturb.transpose(1, 2).flatten(2, 3)
        hidden_states_perturb = hidden_states_perturb.to(query_perturb.dtype)

        hidden_states_perturb = attn.to_out[0](hidden_states_perturb)
        hidden_states_perturb = attn.to_out[1](hidden_states_perturb)
        #----------------------------------------------#
        
        hidden_states = torch.cat([hidden_states_org, hidden_states_perturb], dim=0)
        
        return hidden_states

# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    r"""
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


class LTXImageToVideoSTGPipeline(LTXImageToVideoPipeline):
    def extract_layers(self, file_path="./unet_info.txt"):
        layers = []
        with open(file_path, "w") as f:
            for name, module in self.transformer.named_modules():
                if "attn1" in name and "to" not in name and "add" not in name and "norm" not in name:
                    f.write(f"{name}\n")
                    layer_type = name.split(".")[0].split("_")[0]
                    layers.append((name, module))

        return layers
    
    def replace_layer_processor(self, layers, replace_processor, target_layers_idx=[]):
        for layer_idx in target_layers_idx:
            layers[layer_idx][1].processor = replace_processor

        return

    @property
    def do_spatio_temporal_guidance(self):
        return self._stg_scale > 0.0

    @torch.no_grad()
    def __call__(
        self,
        image: PipelineImageInput = None,
        prompt: Union[str, List[str]] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        height: int = 512,
        width: int = 704,
        num_frames: int = 161,
        frame_rate: int = 25,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        guidance_scale: float = 3,
        num_videos_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 128,
        stg_mode: Optional[str] = "STG-R",
        stg_applied_layers_idx: Optional[List[int]] = [35],
        stg_scale: Optional[float] = 1.0,
        do_rescaling: Optional[bool] = False,
        decode_timestep: Union[float, List[float]] = 0.0,
        decode_noise_scale: Optional[Union[float, List[float]]] = None,
    ):
        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        layers = self.extract_layers()

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt=prompt,
            height=height,
            width=width,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
        )

        self._stg_scale = stg_scale
        self._guidance_scale = guidance_scale
        self._interrupt = False

        if self.do_spatio_temporal_guidance:
            if stg_mode == "STG-A":
                layers = self.extract_layers()
                replace_processor = STGLTXVideoAttentionProcessor2_0()
                self.replace_layer_processor(layers, replace_processor, stg_applied_layers_idx)
            elif stg_mode == "STG-R":
                for i in stg_applied_layers_idx:
                    self.transformer.transformer_blocks[i].forward = types.MethodType(forward_with_stg, self.transformer.transformer_blocks[i])

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Prepare text embeddings
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            negative_prompt=negative_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            num_videos_per_prompt=num_videos_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            max_sequence_length=max_sequence_length,
            device=device,
        )
        if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
        elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0)
            prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask, prompt_attention_mask], dim=0)

        # 4. Prepare latent variables
        if latents is None:
            image = self.video_processor.preprocess(image, height=height, width=width)
            image = image.to(device=device, dtype=prompt_embeds.dtype)

        num_channels_latents = self.transformer.config.in_channels
        latents, conditioning_mask = self.prepare_latents(
            image,
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            height,
            width,
            num_frames,
            torch.float32,
            device,
            generator,
            latents,
        )

        if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
            conditioning_mask = torch.cat([conditioning_mask, conditioning_mask])
        elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
            conditioning_mask = torch.cat([conditioning_mask, conditioning_mask, conditioning_mask])

        # 5. Prepare timesteps
        latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
        latent_height = height // self.vae_spatial_compression_ratio
        latent_width = width // self.vae_spatial_compression_ratio
        video_sequence_length = latent_num_frames * latent_height * latent_width
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        mu = calculate_shift(
            video_sequence_length,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas=sigmas,
            mu=mu,
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 6. Prepare micro-conditions
        latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio
        rope_interpolation_scale = (
            1 / latent_frame_rate,
            self.vae_spatial_compression_ratio,
            self.vae_spatial_compression_ratio,
        )

        # 7. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
                    latent_model_input = torch.cat([latents] * 2)
                elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
                    latent_model_input = torch.cat([latents] * 3)
                    
                latent_model_input = latent_model_input.to(prompt_embeds.dtype)

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latent_model_input.shape[0])
                timestep = timestep.unsqueeze(-1) * (1 - conditioning_mask)

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    encoder_hidden_states=prompt_embeds,
                    timestep=timestep,
                    encoder_attention_mask=prompt_attention_mask,
                    num_frames=latent_num_frames,
                    height=latent_height,
                    width=latent_width,
                    rope_interpolation_scale=rope_interpolation_scale,
                    return_dict=False,
                )[0]
                noise_pred = noise_pred.float()
   
                if self.do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
                    timestep, _ = timestep.chunk(2)
                elif self.do_classifier_free_guidance and self.do_spatio_temporal_guidance:
                    noise_pred_uncond, noise_pred_text, noise_pred_perturb = noise_pred.chunk(3)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) \
                        + self._stg_scale * (noise_pred_text - noise_pred_perturb)
                    timestep, _, _ = timestep.chunk(3)
                    
                if do_rescaling:
                    rescaling_scale = 0.7
                    factor = noise_pred_text.std() / noise_pred.std()
                    factor = rescaling_scale * factor + (1 - rescaling_scale)
                    noise_pred = noise_pred * factor

                # compute the previous noisy sample x_t -> x_t-1
                noise_pred = self._unpack_latents(
                    noise_pred,
                    latent_num_frames,
                    latent_height,
                    latent_width,
                    self.transformer_spatial_patch_size,
                    self.transformer_temporal_patch_size,
                )
                latents = self._unpack_latents(
                    latents,
                    latent_num_frames,
                    latent_height,
                    latent_width,
                    self.transformer_spatial_patch_size,
                    self.transformer_temporal_patch_size,
                )

                noise_pred = noise_pred[:, :, 1:]
                noise_latents = latents[:, :, 1:]
                pred_latents = self.scheduler.step(noise_pred, t, noise_latents, return_dict=False)[0]

                latents = torch.cat([latents[:, :, :1], pred_latents], dim=2)
                latents = self._pack_latents(
                    latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
                )

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if output_type == "latent":
            video = latents
        else:
            latents = self._unpack_latents(
                latents,
                latent_num_frames,
                latent_height,
                latent_width,
                self.transformer_spatial_patch_size,
                self.transformer_temporal_patch_size,
            )
            latents = self._denormalize_latents(
                latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
            )
            latents = latents.to(prompt_embeds.dtype)

            if not self.vae.config.timestep_conditioning:
                timestep = None
            else:
                noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
                if not isinstance(decode_timestep, list):
                    decode_timestep = [decode_timestep] * batch_size
                if decode_noise_scale is None:
                    decode_noise_scale = decode_timestep
                elif not isinstance(decode_noise_scale, list):
                    decode_noise_scale = [decode_noise_scale] * batch_size

                timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
                decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
                    :, None, None, None, None
                ]
                latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise

            video = self.vae.decode(latents, timestep, return_dict=False)[0]
            video = self.video_processor.postprocess_video(video, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return LTXPipelineOutput(frames=video)