matt-bcny's picture
Update handler.py
fdfb021 verified
raw
history blame
21.7 kB
from typing import Dict, List, Any, Optional, Union
import os
import json
import time
import torch
from threading import Thread
import logging
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TextIteratorStreamer,
StoppingCriteriaList,
StoppingCriteria,
BitsAndBytesConfig
)
from peft import PeftModel
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("lora_inference.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class ImprovedJSONStoppingCriteria(StoppingCriteria):
"""
Stopping criteria that ensures JSON is complete before stopping.
Only stops generation when a valid, complete JSON object is detected.
"""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.generated = ""
self.json_complete = False
def __call__(self, input_ids, scores, **kwargs):
# If we already found complete JSON, stop immediately
if self.json_complete:
return True
# Decode current text
text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
# Skip early if no JSON structure detected
if '{' not in text:
return False
# Don't stop if we don't have at least one closing brace
if '}' not in text:
return False
# Check for complete JSON structure
try:
# First, try to find a valid JSON object
start_pos = text.find('{')
# Progressively validate from the first opening brace
stack = []
end_pos = -1
for i, char in enumerate(text[start_pos:], start_pos):
if char == '{':
stack.append('{')
elif char == '}':
if stack:
stack.pop()
if not stack: # We have balanced braces
end_pos = i
potential_json = text[start_pos:end_pos+1]
# Make sure this is actually valid JSON
# and not just balanced braces
try:
# Parse JSON to validate
parsed = json.loads(potential_json)
# We need to make sure we have all required fields
# For search_web or tool calls, verify arguments are complete
if "calls" in parsed:
for call in parsed.get("calls", []):
# If we have a call with arguments, make sure they're complete
if "arguments" in call:
args = call.get("arguments", "")
# If arguments is a string, it might be JSON itself
if isinstance(args, str) and args.startswith("{"):
# If the argument string starts with { but doesn't have a
# closing }, it's incomplete
if not args.endswith("}"):
return False
# Try to parse the arguments as JSON
try:
json.loads(args)
except:
# If we can't parse, the JSON is incomplete
return False
# All checks passed - we have valid, complete JSON
self.json_complete = True
return True
except:
# Not valid JSON, continue looking
continue
# Only stop with excessive braces if we already have a valid structure
open_count = text.count('{')
close_count = text.count('}')
if close_count > open_count:
# Check if we have a valid JSON by balancing
fixed_text = text[start_pos:]
stack = []
for i, char in enumerate(fixed_text):
if char == '{':
stack.append('{')
elif char == '}':
if stack:
stack.pop()
if not stack:
try:
potential_json = fixed_text[:i+1]
parsed = json.loads(potential_json)
self.json_complete = True
return True
except:
pass
except Exception:
# Error in parsing or validation, don't stop
pass
return False
class ExcessBraceStoppingCriteria(StoppingCriteria):
"""Stop generation if we're generating excessive closing braces"""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs):
text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
# Only trigger if we have JSON content
if '{' in text and '}' in text:
# Check if we're generating excessive closing braces
open_count = text.count('{')
close_count = text.count('}')
# If we have more closing than opening braces, stop generation
if close_count > open_count + 3: # Allow a small buffer
return True
return False
def fix_json_output(text):
"""Fix malformed JSON with excessive closing braces."""
if '{' not in text or '}' not in text:
return text
# Count opening and closing braces
open_count = text.count('{')
close_count = text.count('}')
# If balanced or too few closing braces, return as-is
if open_count >= close_count:
return text
# Track JSON depth to find valid JSON object
start_pos = text.find('{')
depth = 0
for i, char in enumerate(text[start_pos:], start_pos):
if char == '{':
depth += 1
elif char == '}':
depth -= 1
if depth == 0:
# Found balanced JSON, return up to this point
return text[:i+1]
# If we can't balance it with depth tracking, simply truncate
return text[:start_pos + text[start_pos:].find('}')+1]
def create_stopping_criteria(tokenizer, stop_tokens):
"""Create stopping criteria from tokens"""
stop_token_ids = []
for stop_token in stop_tokens:
token_ids = tokenizer.encode(stop_token, add_special_tokens=False)
if len(token_ids) > 0:
stop_token_ids.append(token_ids[-1])
return StoppingCriteriaList([StopOnTokens(tokenizer, stop_token_ids)])
class StopOnTokens(StoppingCriteria):
"""Custom stopping criteria for text generation."""
def __init__(self, tokenizer, stop_token_ids):
self.tokenizer = tokenizer
self.stop_token_ids = stop_token_ids
def __call__(self, input_ids, scores, **kwargs):
for stop_id in self.stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
class EndpointHandler:
def __init__(self, path=""):
"""
Initialize the handler by loading model and tokenizer
Args:
path (str): Path to the model directory (uses environment variable if not provided)
"""
# Get model path from environment or from argument
model_path = path if path else os.environ.get("MODEL_PATH", "")
adapter_path = os.environ.get("ADAPTER_PATH", None)
logger.info(f"Loading model from {model_path}")
# Determine quantization settings from environment
use_8bit = os.environ.get("USE_8BIT", "False").lower() == "true"
use_4bit = os.environ.get("USE_4BIT", "False").lower() == "true"
device = os.environ.get("DEVICE", "auto")
# Load tokenizer
logger.info(f"Loading tokenizer from {model_path}")
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model with appropriate configuration
if use_4bit:
logger.info("Using 4-bit quantization for inference...")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
base_model = AutoModelForCausalLM.from_pretrained(
model_path,
quantization_config=quantization_config,
device_map=device,
low_cpu_mem_usage=True
)
elif use_8bit:
logger.info("Using 8-bit quantization for inference...")
base_model = AutoModelForCausalLM.from_pretrained(
model_path,
load_in_8bit=True,
device_map=device,
low_cpu_mem_usage=True
)
else:
logger.info("Loading model in float16 precision...")
base_model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map=device,
low_cpu_mem_usage=True
)
# Apply adapter if specified
if adapter_path:
logger.info(f"Loading LoRA adapter from {adapter_path}")
self.model = PeftModel.from_pretrained(base_model, adapter_path)
else:
self.model = base_model
logger.info("No adapter path provided, using base model only")
self.model.eval()
# Try to use torch.compile for additional performance if available
if torch.__version__ >= "2.0.0" and os.environ.get("USE_COMPILE", "False").lower() == "true":
try:
logger.info("Applying torch.compile for additional optimization...")
self.model = torch.compile(self.model)
logger.info("Model successfully compiled!")
except Exception as e:
logger.warning(f"Could not compile model: {e}")
logger.info("Model and tokenizer loaded successfully!")
def format_conversation(self, messages, add_generation_prompt=True):
"""Format a conversation using the tokenizer's chat template"""
return self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=add_generation_prompt
)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Process inference request
Args:
data (Dict[str, Any]): Request data containing inputs and parameters
Returns:
List[Dict[str, Any]]: List of response dictionaries
"""
start_time = time.time()
# Extract input data and parameters
inputs = data.get("inputs", [])
parameters = data.get("parameters", {})
# Parse generation parameters with defaults
max_new_tokens = parameters.get("max_new_tokens", 512)
temperature = parameters.get("temperature", 0.7)
top_p = parameters.get("top_p", 0.95)
do_sample = parameters.get("do_sample", temperature > 0.1)
stream = parameters.get("stream", False)
json_mode = parameters.get("json_mode", False)
system_prompt = """
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 16 March 2025
When you receive a tool call response, use the output to format an answer to the orginal user question.
You are a helpful assistant with tool calling capabilities.<|eot_id|><|start_header_id|>user<|end_header_id|>
Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt.
Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables.
{
"type": "function",
"function": {
"name": "llm",
"description": "Access your internal knowledge as an LLM to provide general information, explanations, and guidance without searching the web.",
},
"type": "function",
"function": {
"name": "search_web",
"description": "Fetch up-to-date, specific, or contextual information that may not be stable or broadly known.",
"arguments": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "A search query used to find relevant information on the web"
},
"required": ["query"]
}
},
"type": "function",
"function": {
"name": "calculate",
"description": "used for precise mathematical computations",
"arguments": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "An executable mathmatical javascript expression"
},
"required": ["expression"]
}
},
"type": "function",
"function": {
"name": "open_url",
"description": "Opens or shows a website to the user with the specified URL",
"arguments": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The URL of the website to open or show to the user"
},
"required": ["url"]
}
},
"type": "function",
"function": {
"name": "fetch_web_content",
"description": "The URL or webiste of the content to fetch, get, summarize, or analyze"
"arguments": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The URL of the content to fetch, get, summarize, or analyze"
},
"required": ["url"]
}
},
"type": "function",
"function": {
"name": "unsupported_capability",
"description": "Use this function to indicate that the requested action is not supported or not possible.",
"arguments": {
"type": "object",
"properties": {
"capability": {
"type": "string",
"description": "The capability requested by the user that is not supported"
},
"required": ["capability"]
}
},
}
Question:
"""
# Check if input is in various formats and normalize to messages format
if isinstance(inputs, str):
# Create simple chat with user message
messages = [{"role": "user", "content": inputs}]
elif isinstance(inputs, dict) and "messages" in inputs:
# Input is already in chat format
messages = inputs["messages"]
elif isinstance(inputs, list):
# Assume this is a list of message dicts
messages = inputs
else:
# Invalid input format
return [{"error": "Invalid input format. Please provide a string, a list of messages, or a dict with 'messages' key."}]
# Prepare conversation with system prompt if provided
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation.extend(messages)
# Format the conversation
prompt = self.format_conversation(conversation)
# Tokenize the prompt
inputs_dict = self.tokenizer(prompt, return_tensors="pt")
inputs_dict = {k: v.to(self.model.device) for k, v in inputs_dict.items()}
# Configure generation parameters
generation_config = {
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": do_sample,
"pad_token_id": self.tokenizer.pad_token_id,
}
# Add JSON-specific settings if needed
if json_mode:
stop_tokens = ["\n\n", "\n}", "}\n", "}}", "} }", "}\n]", "}\n{"]
stopping_criteria = create_stopping_criteria(self.tokenizer, stop_tokens)
generation_config["stopping_criteria"] = stopping_criteria
# Lower temperature for JSON mode to get more reliable outputs
# but don't set to 0 as that might cause truncation issues
temperature = min(temperature, 0.1)
do_sample = False
generation_config["do_sample"] = do_sample
generation_config["temperature"] = temperature
# Record input length for proper decoding
input_length = inputs_dict["input_ids"].shape[1]
generated_text = ""
stream = False
if stream:
# Use streaming for interactive responses
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_config["streamer"] = streamer
# Start generation in a thread
thread = Thread(target=self.model.generate, kwargs={**inputs_dict, **generation_config})
thread.start()
# Stream the output (for local testing)
for text in streamer:
generated_text += text
# Apply JSON cleaning if needed and json_mode is enabled
if json_mode and '{' in generated_text and '}' in generated_text:
if generated_text.count('}') > generated_text.count('{'):
fixed_text = fix_json_output(generated_text)
if fixed_text != generated_text:
logger.info("Fixed malformed JSON in response")
generated_text = fixed_text
else:
# Non-streaming generation
with torch.no_grad():
outputs = self.model.generate(**inputs_dict, **generation_config)
# Decode the output
generated_ids = outputs[0][input_length:]
generated_text = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
# Apply JSON cleaning if needed and json_mode is enabled
if json_mode and '{' in generated_text and '}' in generated_text:
if generated_text.count('}') > generated_text.count('{'):
fixed_text = fix_json_output(generated_text)
if fixed_text != generated_text:
logger.info("Fixed malformed JSON in response")
generated_text = fixed_text
# Calculate processing time
end_time = time.time()
processing_time = end_time - start_time
# Create response dictionary
response = {
"generated_text": generated_text,
"processing_time": processing_time
}
# Include input token count if requested
if parameters.get("return_token_count", False):
response["input_token_count"] = input_length
response["output_token_count"] = len(generated_text.split())
return [response]
# For local testing
if __name__ == "__main__":
# Test the handler
model_path = os.environ.get("MODEL_PATH", "./model")
handler = EndpointHandler(model_path)
# Test with a simple query
test_data = {
"inputs": "Explain the concept of machine learning in simple terms.",
"parameters": {
"max_new_tokens": 100,
"temperature": 0.7,
"system_prompt": "You are a helpful AI assistant."
}
}
response = handler(test_data)
print("\nTest Response:")
print(json.dumps(response, indent=2))
# Test with chat format and JSON mode
test_chat_data = {
"inputs": {
"messages": [
{"role": "user", "content": "Create a JSON object with information about the solar system. Include at least 3 planets with their name, diameter, and distance from the sun."}
]
},
"parameters": {
"max_new_tokens": 512,
"temperature": 0.1,
"json_mode": True,
"system_prompt": "You are a helpful AI assistant that responds in JSON format."
}
}
chat_response = handler(test_chat_data)
print("\nJSON Format Response:")
print(json.dumps(chat_response, indent=2))