File size: 21,680 Bytes
e8771ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee4f160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8771ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfb021
e8771ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
from typing import Dict, List, Any, Optional, Union
import os
import json
import time
import torch
from threading import Thread
import logging
from transformers import (
    AutoTokenizer, 
    AutoModelForCausalLM,
    TextIteratorStreamer,
    StoppingCriteriaList,
    StoppingCriteria,
    BitsAndBytesConfig
)
from peft import PeftModel

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("lora_inference.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

class ImprovedJSONStoppingCriteria(StoppingCriteria):
    """
    Stopping criteria that ensures JSON is complete before stopping.
    Only stops generation when a valid, complete JSON object is detected.
    """
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        self.generated = ""
        self.json_complete = False
        
    def __call__(self, input_ids, scores, **kwargs):
        # If we already found complete JSON, stop immediately
        if self.json_complete:
            return True
            
        # Decode current text
        text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
        
        # Skip early if no JSON structure detected
        if '{' not in text:
            return False
            
        # Don't stop if we don't have at least one closing brace
        if '}' not in text:
            return False
            
        # Check for complete JSON structure
        try:
            # First, try to find a valid JSON object
            start_pos = text.find('{')
            
            # Progressively validate from the first opening brace
            stack = []
            end_pos = -1
            
            for i, char in enumerate(text[start_pos:], start_pos):
                if char == '{':
                    stack.append('{')
                elif char == '}':
                    if stack:
                        stack.pop()
                        if not stack:  # We have balanced braces
                            end_pos = i
                            potential_json = text[start_pos:end_pos+1]
                            
                            # Make sure this is actually valid JSON 
                            # and not just balanced braces
                            try:
                                # Parse JSON to validate
                                parsed = json.loads(potential_json)
                                
                                # We need to make sure we have all required fields
                                # For search_web or tool calls, verify arguments are complete
                                if "calls" in parsed:
                                    for call in parsed.get("calls", []):
                                        # If we have a call with arguments, make sure they're complete
                                        if "arguments" in call:
                                            args = call.get("arguments", "")
                                            
                                            # If arguments is a string, it might be JSON itself
                                            if isinstance(args, str) and args.startswith("{"):
                                                # If the argument string starts with { but doesn't have a 
                                                # closing }, it's incomplete
                                                if not args.endswith("}"):
                                                    return False
                                                
                                                # Try to parse the arguments as JSON
                                                try:
                                                    json.loads(args)
                                                except:
                                                    # If we can't parse, the JSON is incomplete
                                                    return False
                                
                                # All checks passed - we have valid, complete JSON
                                self.json_complete = True
                                return True
                            except:
                                # Not valid JSON, continue looking
                                continue
            
            # Only stop with excessive braces if we already have a valid structure
            open_count = text.count('{')
            close_count = text.count('}')
            if close_count > open_count:
                # Check if we have a valid JSON by balancing
                fixed_text = text[start_pos:]
                stack = []
                for i, char in enumerate(fixed_text):
                    if char == '{':
                        stack.append('{')
                    elif char == '}':
                        if stack:
                            stack.pop()
                            if not stack:
                                try:
                                    potential_json = fixed_text[:i+1]
                                    parsed = json.loads(potential_json)
                                    self.json_complete = True
                                    return True
                                except:
                                    pass
        except Exception:
            # Error in parsing or validation, don't stop
            pass
                
        return False

class ExcessBraceStoppingCriteria(StoppingCriteria):
    """Stop generation if we're generating excessive closing braces"""
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        
    def __call__(self, input_ids, scores, **kwargs):
        text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
        
        # Only trigger if we have JSON content
        if '{' in text and '}' in text:
            # Check if we're generating excessive closing braces
            open_count = text.count('{')
            close_count = text.count('}')
            
            # If we have more closing than opening braces, stop generation
            if close_count > open_count + 3:  # Allow a small buffer
                return True
        
        return False

def fix_json_output(text):
    """Fix malformed JSON with excessive closing braces."""
    if '{' not in text or '}' not in text:
        return text
    
    # Count opening and closing braces
    open_count = text.count('{')
    close_count = text.count('}')
    
    # If balanced or too few closing braces, return as-is
    if open_count >= close_count:
        return text
    
    # Track JSON depth to find valid JSON object
    start_pos = text.find('{')
    depth = 0
    for i, char in enumerate(text[start_pos:], start_pos):
        if char == '{':
            depth += 1
        elif char == '}':
            depth -= 1
            if depth == 0:
                # Found balanced JSON, return up to this point
                return text[:i+1]
    
    # If we can't balance it with depth tracking, simply truncate
    return text[:start_pos + text[start_pos:].find('}')+1]

def create_stopping_criteria(tokenizer, stop_tokens):
    """Create stopping criteria from tokens"""
    stop_token_ids = []
    for stop_token in stop_tokens:
        token_ids = tokenizer.encode(stop_token, add_special_tokens=False)
        if len(token_ids) > 0:
            stop_token_ids.append(token_ids[-1])
    
    return StoppingCriteriaList([StopOnTokens(tokenizer, stop_token_ids)])

class StopOnTokens(StoppingCriteria):
    """Custom stopping criteria for text generation."""
    def __init__(self, tokenizer, stop_token_ids):
        self.tokenizer = tokenizer
        self.stop_token_ids = stop_token_ids
    
    def __call__(self, input_ids, scores, **kwargs):
        for stop_id in self.stop_token_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

class EndpointHandler:
    def __init__(self, path=""):
        """
        Initialize the handler by loading model and tokenizer
        
        Args:
            path (str): Path to the model directory (uses environment variable if not provided)
        """
        # Get model path from environment or from argument
        model_path = path if path else os.environ.get("MODEL_PATH", "")
        adapter_path = os.environ.get("ADAPTER_PATH", None)
        logger.info(f"Loading model from {model_path}")
        
        # Determine quantization settings from environment
        use_8bit = os.environ.get("USE_8BIT", "False").lower() == "true"
        use_4bit = os.environ.get("USE_4BIT", "False").lower() == "true"
        device = os.environ.get("DEVICE", "auto")
        
        # Load tokenizer
        logger.info(f"Loading tokenizer from {model_path}")
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        
        # Load model with appropriate configuration
        if use_4bit:
            logger.info("Using 4-bit quantization for inference...")
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type="nf4"
            )
            base_model = AutoModelForCausalLM.from_pretrained(
                model_path,
                quantization_config=quantization_config,
                device_map=device,
                low_cpu_mem_usage=True
            )
        elif use_8bit:
            logger.info("Using 8-bit quantization for inference...")
            base_model = AutoModelForCausalLM.from_pretrained(
                model_path,
                load_in_8bit=True,
                device_map=device,
                low_cpu_mem_usage=True
            )
        else:
            logger.info("Loading model in float16 precision...")
            base_model = AutoModelForCausalLM.from_pretrained(
                model_path,
                torch_dtype=torch.float16,
                device_map=device,
                low_cpu_mem_usage=True
            )
        
        # Apply adapter if specified
        if adapter_path:
            logger.info(f"Loading LoRA adapter from {adapter_path}")
            self.model = PeftModel.from_pretrained(base_model, adapter_path)
        else:
            self.model = base_model
            logger.info("No adapter path provided, using base model only")
        
        self.model.eval()
        
        # Try to use torch.compile for additional performance if available
        if torch.__version__ >= "2.0.0" and os.environ.get("USE_COMPILE", "False").lower() == "true":
            try:
                logger.info("Applying torch.compile for additional optimization...")
                self.model = torch.compile(self.model)
                logger.info("Model successfully compiled!")
            except Exception as e:
                logger.warning(f"Could not compile model: {e}")
        
        logger.info("Model and tokenizer loaded successfully!")

    def format_conversation(self, messages, add_generation_prompt=True):
        """Format a conversation using the tokenizer's chat template"""
        return self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=add_generation_prompt
        )

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        Process inference request
        
        Args:
            data (Dict[str, Any]): Request data containing inputs and parameters
            
        Returns:
            List[Dict[str, Any]]: List of response dictionaries
        """
        start_time = time.time()
        
        # Extract input data and parameters
        inputs = data.get("inputs", [])
        parameters = data.get("parameters", {})
        
        # Parse generation parameters with defaults
        max_new_tokens = parameters.get("max_new_tokens", 512)
        temperature = parameters.get("temperature", 0.7)
        top_p = parameters.get("top_p", 0.95)
        do_sample = parameters.get("do_sample", temperature > 0.1)
        stream = parameters.get("stream", False)
        json_mode = parameters.get("json_mode", False)
        system_prompt = """
        <|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 16 March 2025

When you receive a tool call response, use the output to format an answer to the orginal user question.

You are a helpful assistant with tool calling capabilities.<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt.

Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables.
{
    "type": "function",
    "function": {
    "name": "llm",
    "description": "Access your internal knowledge as an LLM to provide general information, explanations, and guidance without searching the web.",
    },

    "type": "function",
    "function": {
    "name": "search_web",
    "description": "Fetch up-to-date, specific, or contextual information that may not be stable or broadly known.",
    "arguments": {
        "type": "object",
        "properties": {
        "query": {
            "type": "string",
            "description": "A search query used to find relevant information on the web"
        },
        "required": ["query"]
    }
    },

    "type": "function",
    "function": {
    "name": "calculate",
    "description": "used for precise mathematical computations",
    "arguments": {
        "type": "object",
        "properties": {
        "expression": {
            "type": "string",
            "description": "An executable mathmatical javascript expression"
        },
        "required": ["expression"]
    }
    },

    "type": "function",
    "function": {
    "name": "open_url",
    "description": "Opens or shows a website to the user with the specified URL",
    "arguments": {
        "type": "object",
        "properties": {
        "url": {
            "type": "string",
            "description": "The URL of the website to open or show to the user"
        },
        "required": ["url"]
    }
    },

    "type": "function",
    "function": {
    "name": "fetch_web_content",
    "description": "The URL or webiste of the content to fetch, get, summarize, or analyze"
    "arguments": {
        "type": "object",
        "properties": {
        "url": {
            "type": "string",
            "description": "The URL of the content to fetch, get, summarize, or analyze"
        },
        "required": ["url"]
    }
    },

    "type": "function",
    "function": {
    "name": "unsupported_capability",
    "description": "Use this function to indicate that the requested action is not supported or not possible.",
    "arguments": {
        "type": "object",
        "properties": {
        "capability": {
            "type": "string",
            "description": "The capability requested by the user that is not supported"
        },
        "required": ["capability"]
    }
    },
}

Question: 

        """
        
        # Check if input is in various formats and normalize to messages format
        if isinstance(inputs, str):
            # Create simple chat with user message
            messages = [{"role": "user", "content": inputs}]
        elif isinstance(inputs, dict) and "messages" in inputs:
            # Input is already in chat format
            messages = inputs["messages"]
        elif isinstance(inputs, list):
            # Assume this is a list of message dicts
            messages = inputs
        else:
            # Invalid input format
            return [{"error": "Invalid input format. Please provide a string, a list of messages, or a dict with 'messages' key."}]
        
        # Prepare conversation with system prompt if provided
        conversation = []
        if system_prompt:
            conversation.append({"role": "system", "content": system_prompt})
        conversation.extend(messages)
        
        # Format the conversation
        prompt = self.format_conversation(conversation)
        
        # Tokenize the prompt
        inputs_dict = self.tokenizer(prompt, return_tensors="pt")
        inputs_dict = {k: v.to(self.model.device) for k, v in inputs_dict.items()}
        
        # Configure generation parameters
        generation_config = {
            "max_new_tokens": max_new_tokens,
            "temperature": temperature,
            "top_p": top_p,
            "do_sample": do_sample,
            "pad_token_id": self.tokenizer.pad_token_id,
        }
        
        # Add JSON-specific settings if needed
        if json_mode:
            stop_tokens = ["\n\n", "\n}", "}\n", "}}", "} }", "}\n]", "}\n{"]
            stopping_criteria = create_stopping_criteria(self.tokenizer, stop_tokens)
            generation_config["stopping_criteria"] = stopping_criteria
            
            # Lower temperature for JSON mode to get more reliable outputs
            # but don't set to 0 as that might cause truncation issues
            temperature = min(temperature, 0.1)
            do_sample = False
            generation_config["do_sample"] = do_sample
            generation_config["temperature"] = temperature
        
        # Record input length for proper decoding
        input_length = inputs_dict["input_ids"].shape[1]
        
        generated_text = ""
        stream = False
        if stream:
            # Use streaming for interactive responses
            streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
            generation_config["streamer"] = streamer
            
            # Start generation in a thread
            thread = Thread(target=self.model.generate, kwargs={**inputs_dict, **generation_config})
            thread.start()
            
            # Stream the output (for local testing)
            for text in streamer:
                generated_text += text
            
            # Apply JSON cleaning if needed and json_mode is enabled
            if json_mode and '{' in generated_text and '}' in generated_text:
                if generated_text.count('}') > generated_text.count('{'):
                    fixed_text = fix_json_output(generated_text)
                    if fixed_text != generated_text:
                        logger.info("Fixed malformed JSON in response")
                        generated_text = fixed_text
        else:
            # Non-streaming generation
            with torch.no_grad():
                outputs = self.model.generate(**inputs_dict, **generation_config)
            
            # Decode the output
            generated_ids = outputs[0][input_length:]
            generated_text = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
            
            # Apply JSON cleaning if needed and json_mode is enabled
            if json_mode and '{' in generated_text and '}' in generated_text:
                if generated_text.count('}') > generated_text.count('{'):
                    fixed_text = fix_json_output(generated_text)
                    if fixed_text != generated_text:
                        logger.info("Fixed malformed JSON in response")
                        generated_text = fixed_text
        
        # Calculate processing time
        end_time = time.time()
        processing_time = end_time - start_time
        
        # Create response dictionary
        response = {
            "generated_text": generated_text,
            "processing_time": processing_time
        }
        
        # Include input token count if requested
        if parameters.get("return_token_count", False):
            response["input_token_count"] = input_length
            response["output_token_count"] = len(generated_text.split())
        
        return [response]

# For local testing
if __name__ == "__main__":
    # Test the handler
    model_path = os.environ.get("MODEL_PATH", "./model")
    handler = EndpointHandler(model_path)
    
    # Test with a simple query
    test_data = {
        "inputs": "Explain the concept of machine learning in simple terms.",
        "parameters": {
            "max_new_tokens": 100,
            "temperature": 0.7,
            "system_prompt": "You are a helpful AI assistant."
        }
    }
    
    response = handler(test_data)
    print("\nTest Response:")
    print(json.dumps(response, indent=2))
    
    # Test with chat format and JSON mode
    test_chat_data = {
        "inputs": {
            "messages": [
                {"role": "user", "content": "Create a JSON object with information about the solar system. Include at least 3 planets with their name, diameter, and distance from the sun."}
            ]
        },
        "parameters": {
            "max_new_tokens": 512,
            "temperature": 0.1,
            "json_mode": True,
            "system_prompt": "You are a helpful AI assistant that responds in JSON format."
        }
    }
    
    chat_response = handler(test_chat_data)
    print("\nJSON Format Response:")
    print(json.dumps(chat_response, indent=2))