File size: 1,981 Bytes
e7f8578
c89ae93
 
 
 
 
 
 
 
 
 
 
 
 
 
e7f8578
 
c89ae93
e7f8578
c89ae93
e7f8578
 
 
c89ae93
 
 
 
 
 
 
e7f8578
 
 
c89ae93
 
 
 
 
 
e7f8578
c89ae93
e7f8578
c89ae93
 
 
e7f8578
 
 
c89ae93
e7f8578
c89ae93
 
 
 
 
e7f8578
c89ae93
e7f8578
c89ae93
 
e7f8578
c89ae93
 
e7f8578
c89ae93
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- fine-tuned
- multiple-choice-qa
- mcqa
- question-answering
- quantized
- 8bit
datasets:
- custom-mcqa-dataset
language:
- en
pipeline_tag: text-generation
---

# MNLP_M2_quantized_model

This model is a quantized fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) for Multiple Choice Question Answering (MCQA) tasks.

## Model Details

- **Base Model**: Qwen/Qwen3-0.6B-Base
- **Task**: Multiple Choice Question Answering
- **Model Type**: Quantized
- **Training Context**: Without context
- **Evaluation Context**: Without context
- **Fine-tuning Method**: Causal Language Modeling
- **Quantization**: 8bit

## Training Details

- **Epochs**: 5
- **Learning Rate**: 5e-05
- **Batch Size**: 2
- **Training Framework**: Transformers + PyTorch
- **Quantization Method**: 8bit
- **Quantization Only**: No

## Performance

| Metric | Baseline | Fine-tuned | Improvement |
|--------|----------|------------|-------------|
| Accuracy | 69.66% | 70.68% | +1.02% |



## Training Data

The model was fine-tuned on a custom MCQA dataset with the following characteristics:
- Format: Multiple choice questions with 4 options (A, B, C, D)
- Context: Not included during training
- Evaluation: Without context
- Quantization: Applied during training and evaluation

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MNLP_M2_quantized_model", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("MNLP_M2_quantized_model", trust_remote_code=True)

# For MCQA tasks, provide the question and options, then generate the answer
prompt = "Question: What is the capital of France?\nA) London\nB) Berlin\nC) Paris\nD) Madrid\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=5)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
```