File size: 1,981 Bytes
e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 e7f8578 c89ae93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: Qwen/Qwen3-0.6B-Base
tags:
- fine-tuned
- multiple-choice-qa
- mcqa
- question-answering
- quantized
- 8bit
datasets:
- custom-mcqa-dataset
language:
- en
pipeline_tag: text-generation
---
# MNLP_M2_quantized_model
This model is a quantized fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) for Multiple Choice Question Answering (MCQA) tasks.
## Model Details
- **Base Model**: Qwen/Qwen3-0.6B-Base
- **Task**: Multiple Choice Question Answering
- **Model Type**: Quantized
- **Training Context**: Without context
- **Evaluation Context**: Without context
- **Fine-tuning Method**: Causal Language Modeling
- **Quantization**: 8bit
## Training Details
- **Epochs**: 5
- **Learning Rate**: 5e-05
- **Batch Size**: 2
- **Training Framework**: Transformers + PyTorch
- **Quantization Method**: 8bit
- **Quantization Only**: No
## Performance
| Metric | Baseline | Fine-tuned | Improvement |
|--------|----------|------------|-------------|
| Accuracy | 69.66% | 70.68% | +1.02% |
## Training Data
The model was fine-tuned on a custom MCQA dataset with the following characteristics:
- Format: Multiple choice questions with 4 options (A, B, C, D)
- Context: Not included during training
- Evaluation: Without context
- Quantization: Applied during training and evaluation
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MNLP_M2_quantized_model", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("MNLP_M2_quantized_model", trust_remote_code=True)
# For MCQA tasks, provide the question and options, then generate the answer
prompt = "Question: What is the capital of France?\nA) London\nB) Berlin\nC) Paris\nD) Madrid\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=5)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
|