malkikothalawala commited on
Commit
f5d81aa
·
verified ·
1 Parent(s): 39f333c

Upload LoRA adapter for DeepSeek-Coder

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-1.3b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-1.3b-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "k_proj",
28
+ "o_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4264ce833a82715829cd676514e24305e562929b3981d7d8d2df427d3fb7147
3
+ size 25191536
checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-1.3b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-1.3b-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "k_proj",
28
+ "o_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4264ce833a82715829cd676514e24305e562929b3981d7d8d2df427d3fb7147
3
+ size 25191536
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc189ddf37397bea952d779c0942696f663f26504b2a5c5a7b65ccf6a36ffac6
3
+ size 50492858
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ecb59423627384eb00e321c340101d31a537d217a13e7bfb5c817982e5a5ef8
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a60c7d771c1fd156acee762fba03c724cb41829a3f71df370ecd1d20b134982
3
+ size 1064
checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|end▁of▁sentence|>"
17
+ }
checkpoint-100/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "clean_up_tokenization_spaces": false,
185
+ "eos_token": "<|end▁of▁sentence|>",
186
+ "extra_special_tokens": {},
187
+ "legacy": true,
188
+ "model_max_length": 1024,
189
+ "pad_token": "<|end▁of▁sentence|>",
190
+ "sp_model_kwargs": {},
191
+ "tokenizer_class": "LlamaTokenizerFast",
192
+ "unk_token": null,
193
+ "use_default_system_prompt": false
194
+ }
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,944 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.6722689075630253,
6
+ "eval_steps": 500,
7
+ "global_step": 100,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.01680672268907563,
14
+ "grad_norm": 0.9195247888565063,
15
+ "learning_rate": 0.0002,
16
+ "loss": 2.2044,
17
+ "mean_token_accuracy": 0.5819655358791351,
18
+ "num_tokens": 280.0,
19
+ "step": 1
20
+ },
21
+ {
22
+ "epoch": 0.03361344537815126,
23
+ "grad_norm": 0.7940512895584106,
24
+ "learning_rate": 0.00019800000000000002,
25
+ "loss": 2.3089,
26
+ "mean_token_accuracy": 0.5964397341012955,
27
+ "num_tokens": 551.0,
28
+ "step": 2
29
+ },
30
+ {
31
+ "epoch": 0.05042016806722689,
32
+ "grad_norm": 0.7546899914741516,
33
+ "learning_rate": 0.000196,
34
+ "loss": 1.8231,
35
+ "mean_token_accuracy": 0.6352723836898804,
36
+ "num_tokens": 862.0,
37
+ "step": 3
38
+ },
39
+ {
40
+ "epoch": 0.06722689075630252,
41
+ "grad_norm": 1.136237621307373,
42
+ "learning_rate": 0.000194,
43
+ "loss": 2.1194,
44
+ "mean_token_accuracy": 0.5928251147270203,
45
+ "num_tokens": 1092.0,
46
+ "step": 4
47
+ },
48
+ {
49
+ "epoch": 0.08403361344537816,
50
+ "grad_norm": 1.2270488739013672,
51
+ "learning_rate": 0.000192,
52
+ "loss": 1.8441,
53
+ "mean_token_accuracy": 0.6453376561403275,
54
+ "num_tokens": 1334.0,
55
+ "step": 5
56
+ },
57
+ {
58
+ "epoch": 0.10084033613445378,
59
+ "grad_norm": 1.1615289449691772,
60
+ "learning_rate": 0.00019,
61
+ "loss": 1.8065,
62
+ "mean_token_accuracy": 0.6384429484605789,
63
+ "num_tokens": 1572.0,
64
+ "step": 6
65
+ },
66
+ {
67
+ "epoch": 0.11764705882352941,
68
+ "grad_norm": 1.291213870048523,
69
+ "learning_rate": 0.000188,
70
+ "loss": 1.433,
71
+ "mean_token_accuracy": 0.6760559976100922,
72
+ "num_tokens": 1834.0,
73
+ "step": 7
74
+ },
75
+ {
76
+ "epoch": 0.13445378151260504,
77
+ "grad_norm": 1.267329216003418,
78
+ "learning_rate": 0.00018600000000000002,
79
+ "loss": 1.2454,
80
+ "mean_token_accuracy": 0.7190766334533691,
81
+ "num_tokens": 2102.0,
82
+ "step": 8
83
+ },
84
+ {
85
+ "epoch": 0.15126050420168066,
86
+ "grad_norm": 1.332841396331787,
87
+ "learning_rate": 0.00018400000000000003,
88
+ "loss": 1.3004,
89
+ "mean_token_accuracy": 0.7266262024641037,
90
+ "num_tokens": 2372.0,
91
+ "step": 9
92
+ },
93
+ {
94
+ "epoch": 0.16806722689075632,
95
+ "grad_norm": 1.5956121683120728,
96
+ "learning_rate": 0.000182,
97
+ "loss": 1.1887,
98
+ "mean_token_accuracy": 0.7487049698829651,
99
+ "num_tokens": 2635.0,
100
+ "step": 10
101
+ },
102
+ {
103
+ "epoch": 0.18487394957983194,
104
+ "grad_norm": 1.5509591102600098,
105
+ "learning_rate": 0.00018,
106
+ "loss": 1.0526,
107
+ "mean_token_accuracy": 0.7587652802467346,
108
+ "num_tokens": 2876.0,
109
+ "step": 11
110
+ },
111
+ {
112
+ "epoch": 0.20168067226890757,
113
+ "grad_norm": 1.5047630071640015,
114
+ "learning_rate": 0.00017800000000000002,
115
+ "loss": 0.9594,
116
+ "mean_token_accuracy": 0.7663996070623398,
117
+ "num_tokens": 3092.0,
118
+ "step": 12
119
+ },
120
+ {
121
+ "epoch": 0.2184873949579832,
122
+ "grad_norm": 1.444846510887146,
123
+ "learning_rate": 0.00017600000000000002,
124
+ "loss": 0.6974,
125
+ "mean_token_accuracy": 0.8532201200723648,
126
+ "num_tokens": 3363.0,
127
+ "step": 13
128
+ },
129
+ {
130
+ "epoch": 0.23529411764705882,
131
+ "grad_norm": 1.386878252029419,
132
+ "learning_rate": 0.000174,
133
+ "loss": 0.7017,
134
+ "mean_token_accuracy": 0.8347512483596802,
135
+ "num_tokens": 3649.0,
136
+ "step": 14
137
+ },
138
+ {
139
+ "epoch": 0.25210084033613445,
140
+ "grad_norm": 1.596093773841858,
141
+ "learning_rate": 0.000172,
142
+ "loss": 0.6279,
143
+ "mean_token_accuracy": 0.8388981074094772,
144
+ "num_tokens": 3870.0,
145
+ "step": 15
146
+ },
147
+ {
148
+ "epoch": 0.2689075630252101,
149
+ "grad_norm": 1.8912463188171387,
150
+ "learning_rate": 0.00017,
151
+ "loss": 0.533,
152
+ "mean_token_accuracy": 0.8526211529970169,
153
+ "num_tokens": 4139.0,
154
+ "step": 16
155
+ },
156
+ {
157
+ "epoch": 0.2857142857142857,
158
+ "grad_norm": 1.3809293508529663,
159
+ "learning_rate": 0.000168,
160
+ "loss": 0.5192,
161
+ "mean_token_accuracy": 0.8702940046787262,
162
+ "num_tokens": 4395.0,
163
+ "step": 17
164
+ },
165
+ {
166
+ "epoch": 0.3025210084033613,
167
+ "grad_norm": 1.4815438985824585,
168
+ "learning_rate": 0.000166,
169
+ "loss": 0.6678,
170
+ "mean_token_accuracy": 0.8443302363157272,
171
+ "num_tokens": 4613.0,
172
+ "step": 18
173
+ },
174
+ {
175
+ "epoch": 0.31932773109243695,
176
+ "grad_norm": 1.1631455421447754,
177
+ "learning_rate": 0.000164,
178
+ "loss": 0.3321,
179
+ "mean_token_accuracy": 0.8968759775161743,
180
+ "num_tokens": 4877.0,
181
+ "step": 19
182
+ },
183
+ {
184
+ "epoch": 0.33613445378151263,
185
+ "grad_norm": 1.2620583772659302,
186
+ "learning_rate": 0.000162,
187
+ "loss": 0.4485,
188
+ "mean_token_accuracy": 0.8692560493946075,
189
+ "num_tokens": 5133.0,
190
+ "step": 20
191
+ },
192
+ {
193
+ "epoch": 0.35294117647058826,
194
+ "grad_norm": 0.9936636686325073,
195
+ "learning_rate": 0.00016,
196
+ "loss": 0.4403,
197
+ "mean_token_accuracy": 0.8931679427623749,
198
+ "num_tokens": 5412.0,
199
+ "step": 21
200
+ },
201
+ {
202
+ "epoch": 0.3697478991596639,
203
+ "grad_norm": 0.9228686690330505,
204
+ "learning_rate": 0.00015800000000000002,
205
+ "loss": 0.3091,
206
+ "mean_token_accuracy": 0.9256660640239716,
207
+ "num_tokens": 5681.0,
208
+ "step": 22
209
+ },
210
+ {
211
+ "epoch": 0.3865546218487395,
212
+ "grad_norm": 1.0632286071777344,
213
+ "learning_rate": 0.00015600000000000002,
214
+ "loss": 0.4862,
215
+ "mean_token_accuracy": 0.8614651262760162,
216
+ "num_tokens": 5949.0,
217
+ "step": 23
218
+ },
219
+ {
220
+ "epoch": 0.40336134453781514,
221
+ "grad_norm": 1.7566121816635132,
222
+ "learning_rate": 0.000154,
223
+ "loss": 0.4674,
224
+ "mean_token_accuracy": 0.8802213817834854,
225
+ "num_tokens": 6198.0,
226
+ "step": 24
227
+ },
228
+ {
229
+ "epoch": 0.42016806722689076,
230
+ "grad_norm": 1.3451807498931885,
231
+ "learning_rate": 0.000152,
232
+ "loss": 0.345,
233
+ "mean_token_accuracy": 0.9215966314077377,
234
+ "num_tokens": 6418.0,
235
+ "step": 25
236
+ },
237
+ {
238
+ "epoch": 0.4369747899159664,
239
+ "grad_norm": 1.0630156993865967,
240
+ "learning_rate": 0.00015000000000000001,
241
+ "loss": 0.379,
242
+ "mean_token_accuracy": 0.8995761275291443,
243
+ "num_tokens": 6646.0,
244
+ "step": 26
245
+ },
246
+ {
247
+ "epoch": 0.453781512605042,
248
+ "grad_norm": 1.5985835790634155,
249
+ "learning_rate": 0.000148,
250
+ "loss": 0.3516,
251
+ "mean_token_accuracy": 0.9066900312900543,
252
+ "num_tokens": 6891.0,
253
+ "step": 27
254
+ },
255
+ {
256
+ "epoch": 0.47058823529411764,
257
+ "grad_norm": 1.1677768230438232,
258
+ "learning_rate": 0.000146,
259
+ "loss": 0.2507,
260
+ "mean_token_accuracy": 0.9439381659030914,
261
+ "num_tokens": 7115.0,
262
+ "step": 28
263
+ },
264
+ {
265
+ "epoch": 0.48739495798319327,
266
+ "grad_norm": 1.8340446949005127,
267
+ "learning_rate": 0.000144,
268
+ "loss": 0.2958,
269
+ "mean_token_accuracy": 0.9207049608230591,
270
+ "num_tokens": 7360.0,
271
+ "step": 29
272
+ },
273
+ {
274
+ "epoch": 0.5042016806722689,
275
+ "grad_norm": 1.5426018238067627,
276
+ "learning_rate": 0.000142,
277
+ "loss": 0.275,
278
+ "mean_token_accuracy": 0.9157240688800812,
279
+ "num_tokens": 7639.0,
280
+ "step": 30
281
+ },
282
+ {
283
+ "epoch": 0.5210084033613446,
284
+ "grad_norm": 1.3587743043899536,
285
+ "learning_rate": 0.00014,
286
+ "loss": 0.1968,
287
+ "mean_token_accuracy": 0.9501292258501053,
288
+ "num_tokens": 7869.0,
289
+ "step": 31
290
+ },
291
+ {
292
+ "epoch": 0.5378151260504201,
293
+ "grad_norm": 1.1160968542099,
294
+ "learning_rate": 0.000138,
295
+ "loss": 0.1432,
296
+ "mean_token_accuracy": 0.9485518783330917,
297
+ "num_tokens": 8094.0,
298
+ "step": 32
299
+ },
300
+ {
301
+ "epoch": 0.5546218487394958,
302
+ "grad_norm": 1.00589919090271,
303
+ "learning_rate": 0.00013600000000000003,
304
+ "loss": 0.1469,
305
+ "mean_token_accuracy": 0.9555195868015289,
306
+ "num_tokens": 8330.0,
307
+ "step": 33
308
+ },
309
+ {
310
+ "epoch": 0.5714285714285714,
311
+ "grad_norm": 0.9749813675880432,
312
+ "learning_rate": 0.000134,
313
+ "loss": 0.1758,
314
+ "mean_token_accuracy": 0.9601360410451889,
315
+ "num_tokens": 8628.0,
316
+ "step": 34
317
+ },
318
+ {
319
+ "epoch": 0.5882352941176471,
320
+ "grad_norm": 1.0763829946517944,
321
+ "learning_rate": 0.000132,
322
+ "loss": 0.1643,
323
+ "mean_token_accuracy": 0.9445353597402573,
324
+ "num_tokens": 8865.0,
325
+ "step": 35
326
+ },
327
+ {
328
+ "epoch": 0.6050420168067226,
329
+ "grad_norm": 0.833663821220398,
330
+ "learning_rate": 0.00013000000000000002,
331
+ "loss": 0.121,
332
+ "mean_token_accuracy": 0.9618351757526398,
333
+ "num_tokens": 9105.0,
334
+ "step": 36
335
+ },
336
+ {
337
+ "epoch": 0.6218487394957983,
338
+ "grad_norm": 1.3269267082214355,
339
+ "learning_rate": 0.00012800000000000002,
340
+ "loss": 0.1915,
341
+ "mean_token_accuracy": 0.9508444666862488,
342
+ "num_tokens": 9396.0,
343
+ "step": 37
344
+ },
345
+ {
346
+ "epoch": 0.6386554621848739,
347
+ "grad_norm": 1.1704431772232056,
348
+ "learning_rate": 0.000126,
349
+ "loss": 0.1726,
350
+ "mean_token_accuracy": 0.9565037339925766,
351
+ "num_tokens": 9676.0,
352
+ "step": 38
353
+ },
354
+ {
355
+ "epoch": 0.6554621848739496,
356
+ "grad_norm": 0.7786519527435303,
357
+ "learning_rate": 0.000124,
358
+ "loss": 0.1421,
359
+ "mean_token_accuracy": 0.9649268388748169,
360
+ "num_tokens": 9930.0,
361
+ "step": 39
362
+ },
363
+ {
364
+ "epoch": 0.6722689075630253,
365
+ "grad_norm": 0.9049130082130432,
366
+ "learning_rate": 0.000122,
367
+ "loss": 0.1154,
368
+ "mean_token_accuracy": 0.9734069108963013,
369
+ "num_tokens": 10235.0,
370
+ "step": 40
371
+ },
372
+ {
373
+ "epoch": 0.6890756302521008,
374
+ "grad_norm": 1.623077630996704,
375
+ "learning_rate": 0.00012,
376
+ "loss": 0.1528,
377
+ "mean_token_accuracy": 0.9538236260414124,
378
+ "num_tokens": 10449.0,
379
+ "step": 41
380
+ },
381
+ {
382
+ "epoch": 0.7058823529411765,
383
+ "grad_norm": 1.512434720993042,
384
+ "learning_rate": 0.000118,
385
+ "loss": 0.1793,
386
+ "mean_token_accuracy": 0.9374579340219498,
387
+ "num_tokens": 10695.0,
388
+ "step": 42
389
+ },
390
+ {
391
+ "epoch": 0.7226890756302521,
392
+ "grad_norm": 0.941612958908081,
393
+ "learning_rate": 0.000116,
394
+ "loss": 0.1458,
395
+ "mean_token_accuracy": 0.9549220055341721,
396
+ "num_tokens": 10981.0,
397
+ "step": 43
398
+ },
399
+ {
400
+ "epoch": 0.7394957983193278,
401
+ "grad_norm": 0.725567102432251,
402
+ "learning_rate": 0.00011399999999999999,
403
+ "loss": 0.113,
404
+ "mean_token_accuracy": 0.9642024636268616,
405
+ "num_tokens": 11249.0,
406
+ "step": 44
407
+ },
408
+ {
409
+ "epoch": 0.7563025210084033,
410
+ "grad_norm": 0.9533170461654663,
411
+ "learning_rate": 0.00011200000000000001,
412
+ "loss": 0.1289,
413
+ "mean_token_accuracy": 0.9561101645231247,
414
+ "num_tokens": 11518.0,
415
+ "step": 45
416
+ },
417
+ {
418
+ "epoch": 0.773109243697479,
419
+ "grad_norm": 0.7225016951560974,
420
+ "learning_rate": 0.00011000000000000002,
421
+ "loss": 0.1127,
422
+ "mean_token_accuracy": 0.9768504500389099,
423
+ "num_tokens": 11786.0,
424
+ "step": 46
425
+ },
426
+ {
427
+ "epoch": 0.7899159663865546,
428
+ "grad_norm": 0.7140802145004272,
429
+ "learning_rate": 0.00010800000000000001,
430
+ "loss": 0.0905,
431
+ "mean_token_accuracy": 0.9777714610099792,
432
+ "num_tokens": 12022.0,
433
+ "step": 47
434
+ },
435
+ {
436
+ "epoch": 0.8067226890756303,
437
+ "grad_norm": 0.9338831901550293,
438
+ "learning_rate": 0.00010600000000000002,
439
+ "loss": 0.1079,
440
+ "mean_token_accuracy": 0.9652335196733475,
441
+ "num_tokens": 12240.0,
442
+ "step": 48
443
+ },
444
+ {
445
+ "epoch": 0.8235294117647058,
446
+ "grad_norm": 0.6939389109611511,
447
+ "learning_rate": 0.00010400000000000001,
448
+ "loss": 0.0942,
449
+ "mean_token_accuracy": 0.9659361839294434,
450
+ "num_tokens": 12491.0,
451
+ "step": 49
452
+ },
453
+ {
454
+ "epoch": 0.8403361344537815,
455
+ "grad_norm": 0.6977850794792175,
456
+ "learning_rate": 0.00010200000000000001,
457
+ "loss": 0.079,
458
+ "mean_token_accuracy": 0.9743468016386032,
459
+ "num_tokens": 12742.0,
460
+ "step": 50
461
+ },
462
+ {
463
+ "epoch": 0.8571428571428571,
464
+ "grad_norm": 0.6693803071975708,
465
+ "learning_rate": 0.0001,
466
+ "loss": 0.0686,
467
+ "mean_token_accuracy": 0.9718740880489349,
468
+ "num_tokens": 12986.0,
469
+ "step": 51
470
+ },
471
+ {
472
+ "epoch": 0.8739495798319328,
473
+ "grad_norm": 1.267232894897461,
474
+ "learning_rate": 9.8e-05,
475
+ "loss": 0.1208,
476
+ "mean_token_accuracy": 0.9666058868169785,
477
+ "num_tokens": 13207.0,
478
+ "step": 52
479
+ },
480
+ {
481
+ "epoch": 0.8907563025210085,
482
+ "grad_norm": 0.686630368232727,
483
+ "learning_rate": 9.6e-05,
484
+ "loss": 0.0829,
485
+ "mean_token_accuracy": 0.9754088222980499,
486
+ "num_tokens": 13461.0,
487
+ "step": 53
488
+ },
489
+ {
490
+ "epoch": 0.907563025210084,
491
+ "grad_norm": 0.6465067267417908,
492
+ "learning_rate": 9.4e-05,
493
+ "loss": 0.063,
494
+ "mean_token_accuracy": 0.9753759354352951,
495
+ "num_tokens": 13751.0,
496
+ "step": 54
497
+ },
498
+ {
499
+ "epoch": 0.9243697478991597,
500
+ "grad_norm": 0.5915058255195618,
501
+ "learning_rate": 9.200000000000001e-05,
502
+ "loss": 0.0652,
503
+ "mean_token_accuracy": 0.9792723804712296,
504
+ "num_tokens": 14013.0,
505
+ "step": 55
506
+ },
507
+ {
508
+ "epoch": 0.9411764705882353,
509
+ "grad_norm": 0.4265214502811432,
510
+ "learning_rate": 9e-05,
511
+ "loss": 0.0552,
512
+ "mean_token_accuracy": 0.9794800281524658,
513
+ "num_tokens": 14315.0,
514
+ "step": 56
515
+ },
516
+ {
517
+ "epoch": 0.957983193277311,
518
+ "grad_norm": 0.553076446056366,
519
+ "learning_rate": 8.800000000000001e-05,
520
+ "loss": 0.0726,
521
+ "mean_token_accuracy": 0.981107696890831,
522
+ "num_tokens": 14583.0,
523
+ "step": 57
524
+ },
525
+ {
526
+ "epoch": 0.9747899159663865,
527
+ "grad_norm": 0.7135282158851624,
528
+ "learning_rate": 8.6e-05,
529
+ "loss": 0.066,
530
+ "mean_token_accuracy": 0.9685419946908951,
531
+ "num_tokens": 14828.0,
532
+ "step": 58
533
+ },
534
+ {
535
+ "epoch": 0.9915966386554622,
536
+ "grad_norm": 0.5108709931373596,
537
+ "learning_rate": 8.4e-05,
538
+ "loss": 0.0579,
539
+ "mean_token_accuracy": 0.9833555668592453,
540
+ "num_tokens": 15131.0,
541
+ "step": 59
542
+ },
543
+ {
544
+ "epoch": 1.0,
545
+ "grad_norm": 0.6764453649520874,
546
+ "learning_rate": 8.2e-05,
547
+ "loss": 0.069,
548
+ "mean_token_accuracy": 0.9762941002845764,
549
+ "num_tokens": 15266.0,
550
+ "step": 60
551
+ },
552
+ {
553
+ "epoch": 1.0,
554
+ "eval_loss": 0.06955836713314056,
555
+ "eval_mean_token_accuracy": 0.9762418886025747,
556
+ "eval_num_tokens": 15266.0,
557
+ "eval_runtime": 8.8223,
558
+ "eval_samples_per_second": 26.977,
559
+ "eval_steps_per_second": 3.4,
560
+ "step": 60
561
+ },
562
+ {
563
+ "epoch": 1.0168067226890756,
564
+ "grad_norm": 0.7502458691596985,
565
+ "learning_rate": 8e-05,
566
+ "loss": 0.0765,
567
+ "mean_token_accuracy": 0.9749942719936371,
568
+ "num_tokens": 15517.0,
569
+ "step": 61
570
+ },
571
+ {
572
+ "epoch": 1.0336134453781514,
573
+ "grad_norm": 0.8168013691902161,
574
+ "learning_rate": 7.800000000000001e-05,
575
+ "loss": 0.0859,
576
+ "mean_token_accuracy": 0.9644966721534729,
577
+ "num_tokens": 15759.0,
578
+ "step": 62
579
+ },
580
+ {
581
+ "epoch": 1.050420168067227,
582
+ "grad_norm": 0.5339249968528748,
583
+ "learning_rate": 7.6e-05,
584
+ "loss": 0.0602,
585
+ "mean_token_accuracy": 0.9755090177059174,
586
+ "num_tokens": 15978.0,
587
+ "step": 63
588
+ },
589
+ {
590
+ "epoch": 1.0672268907563025,
591
+ "grad_norm": 0.42795777320861816,
592
+ "learning_rate": 7.4e-05,
593
+ "loss": 0.0471,
594
+ "mean_token_accuracy": 0.9771932363510132,
595
+ "num_tokens": 16222.0,
596
+ "step": 64
597
+ },
598
+ {
599
+ "epoch": 1.084033613445378,
600
+ "grad_norm": 0.5189265608787537,
601
+ "learning_rate": 7.2e-05,
602
+ "loss": 0.0625,
603
+ "mean_token_accuracy": 0.9816806763410568,
604
+ "num_tokens": 16497.0,
605
+ "step": 65
606
+ },
607
+ {
608
+ "epoch": 1.1008403361344539,
609
+ "grad_norm": 0.5358922481536865,
610
+ "learning_rate": 7e-05,
611
+ "loss": 0.055,
612
+ "mean_token_accuracy": 0.9817706048488617,
613
+ "num_tokens": 16730.0,
614
+ "step": 66
615
+ },
616
+ {
617
+ "epoch": 1.1176470588235294,
618
+ "grad_norm": 0.4254271984100342,
619
+ "learning_rate": 6.800000000000001e-05,
620
+ "loss": 0.0551,
621
+ "mean_token_accuracy": 0.9754405617713928,
622
+ "num_tokens": 16989.0,
623
+ "step": 67
624
+ },
625
+ {
626
+ "epoch": 1.134453781512605,
627
+ "grad_norm": 0.6607869863510132,
628
+ "learning_rate": 6.6e-05,
629
+ "loss": 0.0649,
630
+ "mean_token_accuracy": 0.969991609454155,
631
+ "num_tokens": 17238.0,
632
+ "step": 68
633
+ },
634
+ {
635
+ "epoch": 1.1512605042016806,
636
+ "grad_norm": 0.5505990982055664,
637
+ "learning_rate": 6.400000000000001e-05,
638
+ "loss": 0.0555,
639
+ "mean_token_accuracy": 0.9807892739772797,
640
+ "num_tokens": 17506.0,
641
+ "step": 69
642
+ },
643
+ {
644
+ "epoch": 1.1680672268907564,
645
+ "grad_norm": 0.5438902974128723,
646
+ "learning_rate": 6.2e-05,
647
+ "loss": 0.0523,
648
+ "mean_token_accuracy": 0.9766516983509064,
649
+ "num_tokens": 17757.0,
650
+ "step": 70
651
+ },
652
+ {
653
+ "epoch": 1.184873949579832,
654
+ "grad_norm": 0.6576088666915894,
655
+ "learning_rate": 6e-05,
656
+ "loss": 0.0556,
657
+ "mean_token_accuracy": 0.9764496088027954,
658
+ "num_tokens": 18045.0,
659
+ "step": 71
660
+ },
661
+ {
662
+ "epoch": 1.2016806722689075,
663
+ "grad_norm": 0.4228130877017975,
664
+ "learning_rate": 5.8e-05,
665
+ "loss": 0.0482,
666
+ "mean_token_accuracy": 0.9782925397157669,
667
+ "num_tokens": 18328.0,
668
+ "step": 72
669
+ },
670
+ {
671
+ "epoch": 1.2184873949579833,
672
+ "grad_norm": 0.6111922860145569,
673
+ "learning_rate": 5.6000000000000006e-05,
674
+ "loss": 0.0565,
675
+ "mean_token_accuracy": 0.9718534648418427,
676
+ "num_tokens": 18572.0,
677
+ "step": 73
678
+ },
679
+ {
680
+ "epoch": 1.2352941176470589,
681
+ "grad_norm": 0.558793306350708,
682
+ "learning_rate": 5.4000000000000005e-05,
683
+ "loss": 0.0649,
684
+ "mean_token_accuracy": 0.9830508828163147,
685
+ "num_tokens": 18814.0,
686
+ "step": 74
687
+ },
688
+ {
689
+ "epoch": 1.2521008403361344,
690
+ "grad_norm": 0.5880012512207031,
691
+ "learning_rate": 5.2000000000000004e-05,
692
+ "loss": 0.0527,
693
+ "mean_token_accuracy": 0.981307253241539,
694
+ "num_tokens": 19053.0,
695
+ "step": 75
696
+ },
697
+ {
698
+ "epoch": 1.26890756302521,
699
+ "grad_norm": 0.32453206181526184,
700
+ "learning_rate": 5e-05,
701
+ "loss": 0.0387,
702
+ "mean_token_accuracy": 0.9886987954378128,
703
+ "num_tokens": 19322.0,
704
+ "step": 76
705
+ },
706
+ {
707
+ "epoch": 1.2857142857142856,
708
+ "grad_norm": 0.5277529358863831,
709
+ "learning_rate": 4.8e-05,
710
+ "loss": 0.065,
711
+ "mean_token_accuracy": 0.9776898175477982,
712
+ "num_tokens": 19557.0,
713
+ "step": 77
714
+ },
715
+ {
716
+ "epoch": 1.3025210084033614,
717
+ "grad_norm": 0.40146011114120483,
718
+ "learning_rate": 4.600000000000001e-05,
719
+ "loss": 0.0485,
720
+ "mean_token_accuracy": 0.9843288958072662,
721
+ "num_tokens": 19819.0,
722
+ "step": 78
723
+ },
724
+ {
725
+ "epoch": 1.319327731092437,
726
+ "grad_norm": 0.6262933015823364,
727
+ "learning_rate": 4.4000000000000006e-05,
728
+ "loss": 0.0614,
729
+ "mean_token_accuracy": 0.9736219197511673,
730
+ "num_tokens": 20062.0,
731
+ "step": 79
732
+ },
733
+ {
734
+ "epoch": 1.3361344537815127,
735
+ "grad_norm": 1.2388803958892822,
736
+ "learning_rate": 4.2e-05,
737
+ "loss": 0.0746,
738
+ "mean_token_accuracy": 0.9680851101875305,
739
+ "num_tokens": 20254.0,
740
+ "step": 80
741
+ },
742
+ {
743
+ "epoch": 1.3529411764705883,
744
+ "grad_norm": 0.4032573103904724,
745
+ "learning_rate": 4e-05,
746
+ "loss": 0.0469,
747
+ "mean_token_accuracy": 0.9774428457021713,
748
+ "num_tokens": 20536.0,
749
+ "step": 81
750
+ },
751
+ {
752
+ "epoch": 1.3697478991596639,
753
+ "grad_norm": 0.4665139317512512,
754
+ "learning_rate": 3.8e-05,
755
+ "loss": 0.0508,
756
+ "mean_token_accuracy": 0.9771178215742111,
757
+ "num_tokens": 20761.0,
758
+ "step": 82
759
+ },
760
+ {
761
+ "epoch": 1.3865546218487395,
762
+ "grad_norm": 0.39903876185417175,
763
+ "learning_rate": 3.6e-05,
764
+ "loss": 0.0534,
765
+ "mean_token_accuracy": 0.9797466993331909,
766
+ "num_tokens": 21026.0,
767
+ "step": 83
768
+ },
769
+ {
770
+ "epoch": 1.403361344537815,
771
+ "grad_norm": 0.5796261429786682,
772
+ "learning_rate": 3.4000000000000007e-05,
773
+ "loss": 0.0521,
774
+ "mean_token_accuracy": 0.9702111333608627,
775
+ "num_tokens": 21280.0,
776
+ "step": 84
777
+ },
778
+ {
779
+ "epoch": 1.4201680672268908,
780
+ "grad_norm": 0.4139143228530884,
781
+ "learning_rate": 3.2000000000000005e-05,
782
+ "loss": 0.0442,
783
+ "mean_token_accuracy": 0.9848089665174484,
784
+ "num_tokens": 21529.0,
785
+ "step": 85
786
+ },
787
+ {
788
+ "epoch": 1.4369747899159664,
789
+ "grad_norm": 0.5100081562995911,
790
+ "learning_rate": 3e-05,
791
+ "loss": 0.0601,
792
+ "mean_token_accuracy": 0.9778546392917633,
793
+ "num_tokens": 21764.0,
794
+ "step": 86
795
+ },
796
+ {
797
+ "epoch": 1.453781512605042,
798
+ "grad_norm": 0.6040212512016296,
799
+ "learning_rate": 2.8000000000000003e-05,
800
+ "loss": 0.0593,
801
+ "mean_token_accuracy": 0.974713608622551,
802
+ "num_tokens": 22024.0,
803
+ "step": 87
804
+ },
805
+ {
806
+ "epoch": 1.4705882352941178,
807
+ "grad_norm": 0.2890975773334503,
808
+ "learning_rate": 2.6000000000000002e-05,
809
+ "loss": 0.043,
810
+ "mean_token_accuracy": 0.9827319085597992,
811
+ "num_tokens": 22273.0,
812
+ "step": 88
813
+ },
814
+ {
815
+ "epoch": 1.4873949579831933,
816
+ "grad_norm": 0.6577038168907166,
817
+ "learning_rate": 2.4e-05,
818
+ "loss": 0.061,
819
+ "mean_token_accuracy": 0.9718292504549026,
820
+ "num_tokens": 22493.0,
821
+ "step": 89
822
+ },
823
+ {
824
+ "epoch": 1.504201680672269,
825
+ "grad_norm": 0.40916889905929565,
826
+ "learning_rate": 2.2000000000000003e-05,
827
+ "loss": 0.0493,
828
+ "mean_token_accuracy": 0.9844753742218018,
829
+ "num_tokens": 22759.0,
830
+ "step": 90
831
+ },
832
+ {
833
+ "epoch": 1.5210084033613445,
834
+ "grad_norm": 0.3740443289279938,
835
+ "learning_rate": 2e-05,
836
+ "loss": 0.0513,
837
+ "mean_token_accuracy": 0.9788970202207565,
838
+ "num_tokens": 22999.0,
839
+ "step": 91
840
+ },
841
+ {
842
+ "epoch": 1.53781512605042,
843
+ "grad_norm": 0.3873707056045532,
844
+ "learning_rate": 1.8e-05,
845
+ "loss": 0.0501,
846
+ "mean_token_accuracy": 0.9810363203287125,
847
+ "num_tokens": 23270.0,
848
+ "step": 92
849
+ },
850
+ {
851
+ "epoch": 1.5546218487394958,
852
+ "grad_norm": 0.41598230600357056,
853
+ "learning_rate": 1.6000000000000003e-05,
854
+ "loss": 0.044,
855
+ "mean_token_accuracy": 0.9829495698213577,
856
+ "num_tokens": 23570.0,
857
+ "step": 93
858
+ },
859
+ {
860
+ "epoch": 1.5714285714285714,
861
+ "grad_norm": 0.6361399292945862,
862
+ "learning_rate": 1.4000000000000001e-05,
863
+ "loss": 0.0514,
864
+ "mean_token_accuracy": 0.9911330789327621,
865
+ "num_tokens": 23803.0,
866
+ "step": 94
867
+ },
868
+ {
869
+ "epoch": 1.5882352941176472,
870
+ "grad_norm": 0.36418417096138,
871
+ "learning_rate": 1.2e-05,
872
+ "loss": 0.0456,
873
+ "mean_token_accuracy": 0.9847660809755325,
874
+ "num_tokens": 24075.0,
875
+ "step": 95
876
+ },
877
+ {
878
+ "epoch": 1.6050420168067228,
879
+ "grad_norm": 0.44817042350769043,
880
+ "learning_rate": 1e-05,
881
+ "loss": 0.0485,
882
+ "mean_token_accuracy": 0.9853666424751282,
883
+ "num_tokens": 24343.0,
884
+ "step": 96
885
+ },
886
+ {
887
+ "epoch": 1.6218487394957983,
888
+ "grad_norm": 0.4462110698223114,
889
+ "learning_rate": 8.000000000000001e-06,
890
+ "loss": 0.0522,
891
+ "mean_token_accuracy": 0.977595642209053,
892
+ "num_tokens": 24612.0,
893
+ "step": 97
894
+ },
895
+ {
896
+ "epoch": 1.638655462184874,
897
+ "grad_norm": 0.35791558027267456,
898
+ "learning_rate": 6e-06,
899
+ "loss": 0.0474,
900
+ "mean_token_accuracy": 0.9792077094316483,
901
+ "num_tokens": 24855.0,
902
+ "step": 98
903
+ },
904
+ {
905
+ "epoch": 1.6554621848739495,
906
+ "grad_norm": 0.38176652789115906,
907
+ "learning_rate": 4.000000000000001e-06,
908
+ "loss": 0.0441,
909
+ "mean_token_accuracy": 0.9870962202548981,
910
+ "num_tokens": 25150.0,
911
+ "step": 99
912
+ },
913
+ {
914
+ "epoch": 1.6722689075630253,
915
+ "grad_norm": 0.3823869526386261,
916
+ "learning_rate": 2.0000000000000003e-06,
917
+ "loss": 0.0476,
918
+ "mean_token_accuracy": 0.9815702140331268,
919
+ "num_tokens": 25425.0,
920
+ "step": 100
921
+ }
922
+ ],
923
+ "logging_steps": 1,
924
+ "max_steps": 100,
925
+ "num_input_tokens_seen": 0,
926
+ "num_train_epochs": 2,
927
+ "save_steps": 500,
928
+ "stateful_callbacks": {
929
+ "TrainerControl": {
930
+ "args": {
931
+ "should_epoch_stop": false,
932
+ "should_evaluate": false,
933
+ "should_log": false,
934
+ "should_save": true,
935
+ "should_training_stop": true
936
+ },
937
+ "attributes": {}
938
+ }
939
+ },
940
+ "total_flos": 196286558515200.0,
941
+ "train_batch_size": 1,
942
+ "trial_name": null,
943
+ "trial_params": null
944
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eda6954ebdb14c542f6162f500b6ee1c996c292670307191f2b1c919936aff5
3
+ size 5624
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|end▁of▁sentence|>"
17
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "clean_up_tokenization_spaces": false,
185
+ "eos_token": "<|end▁of▁sentence|>",
186
+ "extra_special_tokens": {},
187
+ "legacy": true,
188
+ "model_max_length": 1024,
189
+ "pad_token": "<|end▁of▁sentence|>",
190
+ "sp_model_kwargs": {},
191
+ "tokenizer_class": "LlamaTokenizerFast",
192
+ "unk_token": null,
193
+ "use_default_system_prompt": false
194
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eda6954ebdb14c542f6162f500b6ee1c996c292670307191f2b1c919936aff5
3
+ size 5624