--- license: mit datasets: - mahdin70/cwe_enriched_balanced_bigvul_primevul metrics: - accuracy - precision - f1 - recall base_model: - microsoft/graphcodebert-base library_name: transformers --- # GraphCodeBERT-VulnCWE - Fine-Tuned GraphCodeBERT for Vulnerability and CWE Classification ## Model Overview This model is a fine-tuned version of **microsoft/graphcodebert-base** on a curated and enriched dataset for vulnerability detection and CWE classification. It is capable of predicting whether a given code snippet is vulnerable and, if vulnerable, identifying the specific CWE ID associated with it. ## Dataset The model was fine-tuned using the dataset [mahdin70/cwe_enriched_balanced_bigvul_primevul](https://huggingface.co/datasets/mahdin70/cwe_enriched_balanced_bigvul_primevul). The dataset contains both vulnerable and non-vulnerable code samples and is enriched with CWE metadata. ### CWE IDs Covered: 1. **CWE-119**: Improper Restriction of Operations within the Bounds of a Memory Buffer 2. **CWE-20**: Improper Input Validation 3. **CWE-125**: Out-of-bounds Read 4. **CWE-399**: Resource Management Errors 5. **CWE-200**: Information Exposure 6. **CWE-787**: Out-of-bounds Write 7. **CWE-264**: Permissions, Privileges, and Access Controls 8. **CWE-416**: Use After Free 9. **CWE-476**: NULL Pointer Dereference 10. **CWE-190**: Integer Overflow or Wraparound 11. **CWE-189**: Numeric Errors 12. **CWE-362**: Concurrent Execution using Shared Resource with Improper Synchronization --- ## Model Training The model was trained for **3 epochs** with the following configuration: - **Learning Rate**: 2e-5 - **Weight Decay**: 0.01 - **Batch Size**: 8 - **Optimizer**: AdamW - **Scheduler**: Linear ### Training Loss and Validation Metrics Per Epoch: | Epoch | Training Loss | Validation Loss | Vul Accuracy | Vul Precision | Vul Recall | Vul F1 | CWE Accuracy | |-------|---------------|-----------------|--------------|---------------|------------|--------|--------------| | 1 | 1.2824 | 1.4160 | 0.7914 | 0.8990 | 0.5200 | 0.6589 | 0.3551 | | 2 | 1.1292 | 1.2632 | 0.8007 | 0.8037 | 0.6426 | 0.7142 | 0.4433 | | 3 | 0.8598 | 1.2436 | 0.7945 | 0.7669 | 0.6747 | 0.7179 | 0.4605 | #### Training Summary: - **Total Training Steps**: 5916 - **Training Loss**: 1.2380 - **Training Time**: 4785.0 seconds (~80 minutes) - **Training Speed**: 9.89 samples per second - **Steps Per Second**: 1.236 ## How to Use the Model ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("mahdin70/GraphCodeBERT-VulnCWE", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base") code_snippet = "int main() { int arr[10]; arr[11] = 5; return 0; }" inputs = tokenizer(code_snippet, return_tensors="pt") outputs = model(**inputs) vul_logits = outputs["vul_logits"] cwe_logits = outputs["cwe_logits"] vul_pred = vul_logits.argmax(dim=1).item() cwe_pred = cwe_logits.argmax(dim=1).item() print(f"Vulnerability: {'Vulnerable' if vul_pred == 1 else 'Non-vulnerable'}") print(f"CWE ID: {cwe_pred if vul_pred == 1 else 'N/A'}") ```