Add files using upload-large-folder tool
Browse files- .gitattributes +4 -0
- Qwen2.5-1.5B-Instruct_multi-prefill-seq_f32_ekv1280.task +2 -2
- Qwen2.5-1.5B-Instruct_multi-prefill-seq_f32_ekv4096.task +3 -0
- Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv1280.task +2 -2
- Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv4096.task +3 -0
- Qwen2.5-1.5B-Instruct_seq128_q8_ekv1280.task +3 -0
- Qwen2.5-1.5B-Instruct_seq128_q8_ekv4096.task +3 -0
- README.md +74 -27
- notebook.ipynb +17 -1378
.gitattributes
CHANGED
@@ -35,3 +35,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
37 |
Qwen2.5-1.5B-Instruct_multi-prefill-seq_f32_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
37 |
Qwen2.5-1.5B-Instruct_multi-prefill-seq_f32_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
38 |
+
Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv4096.task filter=lfs diff=lfs merge=lfs -text
|
39 |
+
Qwen2.5-1.5B-Instruct_seq128_q8_ekv4096.task filter=lfs diff=lfs merge=lfs -text
|
40 |
+
Qwen2.5-1.5B-Instruct_seq128_q8_ekv1280.task filter=lfs diff=lfs merge=lfs -text
|
41 |
+
Qwen2.5-1.5B-Instruct_multi-prefill-seq_f32_ekv4096.task filter=lfs diff=lfs merge=lfs -text
|
Qwen2.5-1.5B-Instruct_multi-prefill-seq_f32_ekv1280.task
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edec401a8dd8de5409a5a1618e73ade59385d7a275b383b5c664e99882949c6d
|
3 |
+
size 6181747452
|
Qwen2.5-1.5B-Instruct_multi-prefill-seq_f32_ekv4096.task
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a6bf44f952218b22a76cc1b94ac46a5db8dc43c7f31b7e635f2ca608e3f35ed
|
3 |
+
size 4296491008
|
Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv1280.task
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d867a7c93a6acf2892f08e0174e2f6f351ad256b7e3cfb6d6cd9c89794b42e0
|
3 |
+
size 1597913616
|
Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv4096.task
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a662d1af6ca2c750bc047738d6f48441d4b6968062c24ef52fcff5d693291f6
|
3 |
+
size 1597913616
|
Qwen2.5-1.5B-Instruct_seq128_q8_ekv1280.task
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8771564e61c908c2199bcaa28b0ff9c5f55afb2ae73fbe263142a067113968df
|
3 |
+
size 1567364648
|
Qwen2.5-1.5B-Instruct_seq128_q8_ekv4096.task
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98c289e1c43cc592ac535594d5de4bdde449e8dc012ac66909064b6880f8b717
|
3 |
+
size 1567364648
|
README.md
CHANGED
@@ -29,55 +29,102 @@ on Colab could be much worse than on a local device.*
|
|
29 |
### Android
|
30 |
|
31 |
* Download and install
|
32 |
-
[the apk](https://github.com/google-ai-edge/
|
33 |
* Follow the instructions in the app.
|
34 |
|
35 |
-
To build the demo app from source, please follow the
|
36 |
-
[instructions](https://github.com/google-ai-edge/mediapipe-samples/blob/main/examples/llm_inference/android/README.md)
|
37 |
from the GitHub repository.
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
## Performance
|
40 |
|
41 |
### Android
|
42 |
|
43 |
-
Note that all benchmark stats are from a Samsung S24 Ultra
|
44 |
-
1280 KV cache size with multiple prefill signatures enabled.
|
45 |
|
46 |
<table border="1">
|
47 |
<tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
<th></th>
|
49 |
-
<th>Backend</th>
|
50 |
-
<th>Prefill (tokens/sec)</th>
|
51 |
-
<th>Decode (tokens/sec)</th>
|
52 |
-
<th>Time-to-first-token (sec)</th>
|
53 |
-
<th>Memory (RSS in MB)</th>
|
54 |
-
<th>Model size (MB)</th>
|
55 |
</tr>
|
56 |
<tr>
|
57 |
-
<td>
|
58 |
-
<td>
|
59 |
-
<td><p style="text-align: right">
|
60 |
-
<td><p style="text-align: right">
|
61 |
-
<td><p style="text-align: right">
|
62 |
-
<td><p style="text-align: right">
|
63 |
-
<td><p style="text-align: right">
|
|
|
|
|
|
|
64 |
</tr>
|
65 |
<tr>
|
66 |
-
<td>dynamic_int8</td>
|
67 |
-
<td>
|
68 |
-
<td><p style="text-align: right">
|
69 |
-
<td><p style="text-align: right">
|
70 |
-
<td><p style="text-align: right">
|
71 |
-
<td><p style="text-align: right">
|
72 |
-
<td><p style="text-align: right"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
</tr>
|
74 |
|
75 |
</table>
|
76 |
|
|
|
|
|
77 |
* Model Size: measured by the size of the .tflite flatbuffer (serialization
|
78 |
format for LiteRT models)
|
79 |
* Memory: indicator of peak RAM usage
|
80 |
* The inference on CPU is accelerated via the LiteRT
|
81 |
[XNNPACK](https://github.com/google/XNNPACK) delegate with 4 threads
|
82 |
-
* Benchmark is
|
83 |
-
|
|
|
|
29 |
### Android
|
30 |
|
31 |
* Download and install
|
32 |
+
[the apk](https://github.com/google-ai-edge/gallery/releases/latest/download/ai-edge-gallery.apk).
|
33 |
* Follow the instructions in the app.
|
34 |
|
35 |
+
To build the demo app from source, please follow the [instructions](https://github.com/google-ai-edge/gallery/blob/main/README.md)
|
|
|
36 |
from the GitHub repository.
|
37 |
|
38 |
+
### iOS
|
39 |
+
|
40 |
+
* Clone the [MediaPipe samples](https://github.com/google-ai-edge/mediapipe-samples)
|
41 |
+
repository and follow the [instructions](https://github.com/google-ai-edge/mediapipe-samples/tree/main/examples/llm_inference/ios/README.md)
|
42 |
+
to build the LLM Inference iOS Sample App using XCode.
|
43 |
+
* Run the app via the iOS simulator or deploy to an iOS device.
|
44 |
+
|
45 |
## Performance
|
46 |
|
47 |
### Android
|
48 |
|
49 |
+
Note that all benchmark stats are from a Samsung S24 Ultra and multiple prefill signatures enabled.
|
|
|
50 |
|
51 |
<table border="1">
|
52 |
<tr>
|
53 |
+
<th style="text-align: left">Backend</th>
|
54 |
+
<th style="text-align: left">Quantization scheme</th>
|
55 |
+
<th style="text-align: left">Context length</th>
|
56 |
+
<th style="text-align: left">Prefill (tokens/sec)</th>
|
57 |
+
<th style="text-align: left">Decode (tokens/sec)</th>
|
58 |
+
<th style="text-align: left">Time-to-first-token (sec)</th>
|
59 |
+
<th style="text-align: left">CPU Memory (RSS in MB)</th>
|
60 |
+
<th style="text-align: left">GPU Memory (RSS in MB)</th>
|
61 |
+
<th style="text-align: left">Model size (MB)</th>
|
62 |
<th></th>
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
</tr>
|
64 |
<tr>
|
65 |
+
<td rowspan="3"><p style="text-align: left">CPU</p></td>
|
66 |
+
<td><p style="text-align: left">fp32 (baseline)</p></td>
|
67 |
+
<td><p style="text-align: right">1280</p></td>
|
68 |
+
<td><p style="text-align: right">27 tk/s</p></td>
|
69 |
+
<td><p style="text-align: right">6 tk/s</p></td>
|
70 |
+
<td><p style="text-align: right">9.88 s</p></td>
|
71 |
+
<td><p style="text-align: right">6,144 MB</p></td>
|
72 |
+
<td><p style="text-align: right"></p></td>
|
73 |
+
<td><p style="text-align: right">5,895 MB</p></td>
|
74 |
+
<td><p style="text-align: left"><a style="text-decoration: none" href="https://huggingface.co/litert-community/Qwen2.5-1.5B-Instruct/resolve/main/Qwen2.5-1.5B-Instruct_multi-prefill-seq_f32_ekv1280.task">🔗</a></p></td>
|
75 |
</tr>
|
76 |
<tr>
|
77 |
+
<td rowspan="4"><p style="text-align: left">dynamic_int8</p></td>
|
78 |
+
<td><p style="text-align: right">1280</p></td>
|
79 |
+
<td><p style="text-align: right">106 tk/s</p></td>
|
80 |
+
<td><p style="text-align: right">23 tk/s</p></td>
|
81 |
+
<td><p style="text-align: right">2.74 s</p></td>
|
82 |
+
<td><p style="text-align: right">1,820 MB</p></td>
|
83 |
+
<td><p style="text-align: right"></p></td>
|
84 |
+
<td><p style="text-align: right">1,523 MB</p></td>
|
85 |
+
<td><p style="text-align: left"><a style="text-decoration: none" href="https://huggingface.co/litert-community/Qwen2.5-1.5B-Instruct/resolve/main/Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv1280.task">🔗</a></p></td>
|
86 |
+
</tr>
|
87 |
+
<tr>
|
88 |
+
<td><p style="text-align: right">4096</p></td>
|
89 |
+
<td><p style="text-align: right">63 tk/s</p></td>
|
90 |
+
<td><p style="text-align: right">20 tk/s</p></td>
|
91 |
+
<td><p style="text-align: right">4.40 s</p></td>
|
92 |
+
<td><p style="text-align: right">2,042 MB</p></td>
|
93 |
+
<td><p style="text-align: right"></p></td>
|
94 |
+
<td><p style="text-align: right">1,523 MB</p></td>
|
95 |
+
<td><p style="text-align: left"><a style="text-decoration: none" href="https://huggingface.co/litert-community/Qwen2.5-1.5B-Instruct/resolve/main/Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv4096.task">🔗</a></p></td>
|
96 |
+
</tr>
|
97 |
+
<tr>
|
98 |
+
<td rowspan="2"><p style="text-align: left">GPU</p></td>
|
99 |
+
<td><p style="text-align: right">1280</p></td>
|
100 |
+
<td><p style="text-align: right">706 tk/s</p></td>
|
101 |
+
<td><p style="text-align: right">24 tk/s</p></td>
|
102 |
+
<td><p style="text-align: right">6.94 s</p></td>
|
103 |
+
<td><p style="text-align: right">3,175 MB</p></td>
|
104 |
+
<td><p style="text-align: right">1,504 MB</p></td>
|
105 |
+
<td><p style="text-align: right">1,523 MB</p></td>
|
106 |
+
<td><p style="text-align: left"><a style="text-decoration: none" href="https://huggingface.co/litert-community/Qwen2.5-1.5B-Instruct/resolve/main/Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv1280.task">🔗</a></p></td>
|
107 |
+
</tr>
|
108 |
+
<tr>
|
109 |
+
<td><p style="text-align: right">4096</p></td>
|
110 |
+
<td><p style="text-align: right">417 tk/s</p></td>
|
111 |
+
<td><p style="text-align: right">22 tk/s</p></td>
|
112 |
+
<td><p style="text-align: right">7.93 s</p></td>
|
113 |
+
<td><p style="text-align: right">3,176 MB</p></td>
|
114 |
+
<td><p style="text-align: right">1,875 MB</p></td>
|
115 |
+
<td><p style="text-align: right">1,523 MB</p></td>
|
116 |
+
<td><p style="text-align: left"><a style="text-decoration: none" href="https://huggingface.co/litert-community/Qwen2.5-1.5B-Instruct/resolve/main/Qwen2.5-1.5B-Instruct_multi-prefill-seq_q8_ekv4096.task">🔗</a></p></td>
|
117 |
</tr>
|
118 |
|
119 |
</table>
|
120 |
|
121 |
+
* For the list of supported quantization schemes see [supported-schemes](https://github.com/google-ai-edge/ai-edge-torch/tree/main/ai_edge_torch/generative/quantize#supported-schemes).
|
122 |
+
For these models, we are using prefill signature lengths of 32, 128, 512 and 1280.
|
123 |
* Model Size: measured by the size of the .tflite flatbuffer (serialization
|
124 |
format for LiteRT models)
|
125 |
* Memory: indicator of peak RAM usage
|
126 |
* The inference on CPU is accelerated via the LiteRT
|
127 |
[XNNPACK](https://github.com/google/XNNPACK) delegate with 4 threads
|
128 |
+
* Benchmark is run with cache enabled and initialized. During the first run,
|
129 |
+
the time to first token may differ.
|
130 |
+
|
notebook.ipynb
CHANGED
@@ -11,1043 +11,13 @@
|
|
11 |
},
|
12 |
"language_info": {
|
13 |
"name": "python"
|
14 |
-
},
|
15 |
-
"widgets": {
|
16 |
-
"application/vnd.jupyter.widget-state+json": {
|
17 |
-
"47cd47140dbb4e28a4f31d5632bfe82d": {
|
18 |
-
"model_module": "@jupyter-widgets/controls",
|
19 |
-
"model_name": "HBoxModel",
|
20 |
-
"model_module_version": "1.5.0",
|
21 |
-
"state": {
|
22 |
-
"_dom_classes": [],
|
23 |
-
"_model_module": "@jupyter-widgets/controls",
|
24 |
-
"_model_module_version": "1.5.0",
|
25 |
-
"_model_name": "HBoxModel",
|
26 |
-
"_view_count": null,
|
27 |
-
"_view_module": "@jupyter-widgets/controls",
|
28 |
-
"_view_module_version": "1.5.0",
|
29 |
-
"_view_name": "HBoxView",
|
30 |
-
"box_style": "",
|
31 |
-
"children": [
|
32 |
-
"IPY_MODEL_7c0ddb1e0e3145f08ccb0c32b02c562f",
|
33 |
-
"IPY_MODEL_85c490db972b4d659caad513359a6700",
|
34 |
-
"IPY_MODEL_d61e96ae08d84414a638dd592f13fb18"
|
35 |
-
],
|
36 |
-
"layout": "IPY_MODEL_9e7f4734aa034e4aa5207b8a2498ee02"
|
37 |
-
}
|
38 |
-
},
|
39 |
-
"7c0ddb1e0e3145f08ccb0c32b02c562f": {
|
40 |
-
"model_module": "@jupyter-widgets/controls",
|
41 |
-
"model_name": "HTMLModel",
|
42 |
-
"model_module_version": "1.5.0",
|
43 |
-
"state": {
|
44 |
-
"_dom_classes": [],
|
45 |
-
"_model_module": "@jupyter-widgets/controls",
|
46 |
-
"_model_module_version": "1.5.0",
|
47 |
-
"_model_name": "HTMLModel",
|
48 |
-
"_view_count": null,
|
49 |
-
"_view_module": "@jupyter-widgets/controls",
|
50 |
-
"_view_module_version": "1.5.0",
|
51 |
-
"_view_name": "HTMLView",
|
52 |
-
"description": "",
|
53 |
-
"description_tooltip": null,
|
54 |
-
"layout": "IPY_MODEL_df08ba8056fb47cb969e132087987e68",
|
55 |
-
"placeholder": "",
|
56 |
-
"style": "IPY_MODEL_470febc3af8348ef8611255e88401229",
|
57 |
-
"value": "deepseek_q8_seq128_ekv1280.tflite: 100%"
|
58 |
-
}
|
59 |
-
},
|
60 |
-
"85c490db972b4d659caad513359a6700": {
|
61 |
-
"model_module": "@jupyter-widgets/controls",
|
62 |
-
"model_name": "FloatProgressModel",
|
63 |
-
"model_module_version": "1.5.0",
|
64 |
-
"state": {
|
65 |
-
"_dom_classes": [],
|
66 |
-
"_model_module": "@jupyter-widgets/controls",
|
67 |
-
"_model_module_version": "1.5.0",
|
68 |
-
"_model_name": "FloatProgressModel",
|
69 |
-
"_view_count": null,
|
70 |
-
"_view_module": "@jupyter-widgets/controls",
|
71 |
-
"_view_module_version": "1.5.0",
|
72 |
-
"_view_name": "ProgressView",
|
73 |
-
"bar_style": "success",
|
74 |
-
"description": "",
|
75 |
-
"description_tooltip": null,
|
76 |
-
"layout": "IPY_MODEL_39cedca11f574c01808acdc1be9aa68d",
|
77 |
-
"max": 1808783640,
|
78 |
-
"min": 0,
|
79 |
-
"orientation": "horizontal",
|
80 |
-
"style": "IPY_MODEL_62bd6d393ca74193bded59a8ebd0a749",
|
81 |
-
"value": 1808783640
|
82 |
-
}
|
83 |
-
},
|
84 |
-
"d61e96ae08d84414a638dd592f13fb18": {
|
85 |
-
"model_module": "@jupyter-widgets/controls",
|
86 |
-
"model_name": "HTMLModel",
|
87 |
-
"model_module_version": "1.5.0",
|
88 |
-
"state": {
|
89 |
-
"_dom_classes": [],
|
90 |
-
"_model_module": "@jupyter-widgets/controls",
|
91 |
-
"_model_module_version": "1.5.0",
|
92 |
-
"_model_name": "HTMLModel",
|
93 |
-
"_view_count": null,
|
94 |
-
"_view_module": "@jupyter-widgets/controls",
|
95 |
-
"_view_module_version": "1.5.0",
|
96 |
-
"_view_name": "HTMLView",
|
97 |
-
"description": "",
|
98 |
-
"description_tooltip": null,
|
99 |
-
"layout": "IPY_MODEL_475c5c4fc6eb404180d7b69d75f797ea",
|
100 |
-
"placeholder": "",
|
101 |
-
"style": "IPY_MODEL_b815fc17c9ee4913b5cb452653ff1af9",
|
102 |
-
"value": " 1.81G/1.81G [00:16\u0026lt;00:00, 160MB/s]"
|
103 |
-
}
|
104 |
-
},
|
105 |
-
"9e7f4734aa034e4aa5207b8a2498ee02": {
|
106 |
-
"model_module": "@jupyter-widgets/base",
|
107 |
-
"model_name": "LayoutModel",
|
108 |
-
"model_module_version": "1.2.0",
|
109 |
-
"state": {
|
110 |
-
"_model_module": "@jupyter-widgets/base",
|
111 |
-
"_model_module_version": "1.2.0",
|
112 |
-
"_model_name": "LayoutModel",
|
113 |
-
"_view_count": null,
|
114 |
-
"_view_module": "@jupyter-widgets/base",
|
115 |
-
"_view_module_version": "1.2.0",
|
116 |
-
"_view_name": "LayoutView",
|
117 |
-
"align_content": null,
|
118 |
-
"align_items": null,
|
119 |
-
"align_self": null,
|
120 |
-
"border": null,
|
121 |
-
"bottom": null,
|
122 |
-
"display": null,
|
123 |
-
"flex": null,
|
124 |
-
"flex_flow": null,
|
125 |
-
"grid_area": null,
|
126 |
-
"grid_auto_columns": null,
|
127 |
-
"grid_auto_flow": null,
|
128 |
-
"grid_auto_rows": null,
|
129 |
-
"grid_column": null,
|
130 |
-
"grid_gap": null,
|
131 |
-
"grid_row": null,
|
132 |
-
"grid_template_areas": null,
|
133 |
-
"grid_template_columns": null,
|
134 |
-
"grid_template_rows": null,
|
135 |
-
"height": null,
|
136 |
-
"justify_content": null,
|
137 |
-
"justify_items": null,
|
138 |
-
"left": null,
|
139 |
-
"margin": null,
|
140 |
-
"max_height": null,
|
141 |
-
"max_width": null,
|
142 |
-
"min_height": null,
|
143 |
-
"min_width": null,
|
144 |
-
"object_fit": null,
|
145 |
-
"object_position": null,
|
146 |
-
"order": null,
|
147 |
-
"overflow": null,
|
148 |
-
"overflow_x": null,
|
149 |
-
"overflow_y": null,
|
150 |
-
"padding": null,
|
151 |
-
"right": null,
|
152 |
-
"top": null,
|
153 |
-
"visibility": null,
|
154 |
-
"width": null
|
155 |
-
}
|
156 |
-
},
|
157 |
-
"df08ba8056fb47cb969e132087987e68": {
|
158 |
-
"model_module": "@jupyter-widgets/base",
|
159 |
-
"model_name": "LayoutModel",
|
160 |
-
"model_module_version": "1.2.0",
|
161 |
-
"state": {
|
162 |
-
"_model_module": "@jupyter-widgets/base",
|
163 |
-
"_model_module_version": "1.2.0",
|
164 |
-
"_model_name": "LayoutModel",
|
165 |
-
"_view_count": null,
|
166 |
-
"_view_module": "@jupyter-widgets/base",
|
167 |
-
"_view_module_version": "1.2.0",
|
168 |
-
"_view_name": "LayoutView",
|
169 |
-
"align_content": null,
|
170 |
-
"align_items": null,
|
171 |
-
"align_self": null,
|
172 |
-
"border": null,
|
173 |
-
"bottom": null,
|
174 |
-
"display": null,
|
175 |
-
"flex": null,
|
176 |
-
"flex_flow": null,
|
177 |
-
"grid_area": null,
|
178 |
-
"grid_auto_columns": null,
|
179 |
-
"grid_auto_flow": null,
|
180 |
-
"grid_auto_rows": null,
|
181 |
-
"grid_column": null,
|
182 |
-
"grid_gap": null,
|
183 |
-
"grid_row": null,
|
184 |
-
"grid_template_areas": null,
|
185 |
-
"grid_template_columns": null,
|
186 |
-
"grid_template_rows": null,
|
187 |
-
"height": null,
|
188 |
-
"justify_content": null,
|
189 |
-
"justify_items": null,
|
190 |
-
"left": null,
|
191 |
-
"margin": null,
|
192 |
-
"max_height": null,
|
193 |
-
"max_width": null,
|
194 |
-
"min_height": null,
|
195 |
-
"min_width": null,
|
196 |
-
"object_fit": null,
|
197 |
-
"object_position": null,
|
198 |
-
"order": null,
|
199 |
-
"overflow": null,
|
200 |
-
"overflow_x": null,
|
201 |
-
"overflow_y": null,
|
202 |
-
"padding": null,
|
203 |
-
"right": null,
|
204 |
-
"top": null,
|
205 |
-
"visibility": null,
|
206 |
-
"width": null
|
207 |
-
}
|
208 |
-
},
|
209 |
-
"470febc3af8348ef8611255e88401229": {
|
210 |
-
"model_module": "@jupyter-widgets/controls",
|
211 |
-
"model_name": "DescriptionStyleModel",
|
212 |
-
"model_module_version": "1.5.0",
|
213 |
-
"state": {
|
214 |
-
"_model_module": "@jupyter-widgets/controls",
|
215 |
-
"_model_module_version": "1.5.0",
|
216 |
-
"_model_name": "DescriptionStyleModel",
|
217 |
-
"_view_count": null,
|
218 |
-
"_view_module": "@jupyter-widgets/base",
|
219 |
-
"_view_module_version": "1.2.0",
|
220 |
-
"_view_name": "StyleView",
|
221 |
-
"description_width": ""
|
222 |
-
}
|
223 |
-
},
|
224 |
-
"39cedca11f574c01808acdc1be9aa68d": {
|
225 |
-
"model_module": "@jupyter-widgets/base",
|
226 |
-
"model_name": "LayoutModel",
|
227 |
-
"model_module_version": "1.2.0",
|
228 |
-
"state": {
|
229 |
-
"_model_module": "@jupyter-widgets/base",
|
230 |
-
"_model_module_version": "1.2.0",
|
231 |
-
"_model_name": "LayoutModel",
|
232 |
-
"_view_count": null,
|
233 |
-
"_view_module": "@jupyter-widgets/base",
|
234 |
-
"_view_module_version": "1.2.0",
|
235 |
-
"_view_name": "LayoutView",
|
236 |
-
"align_content": null,
|
237 |
-
"align_items": null,
|
238 |
-
"align_self": null,
|
239 |
-
"border": null,
|
240 |
-
"bottom": null,
|
241 |
-
"display": null,
|
242 |
-
"flex": null,
|
243 |
-
"flex_flow": null,
|
244 |
-
"grid_area": null,
|
245 |
-
"grid_auto_columns": null,
|
246 |
-
"grid_auto_flow": null,
|
247 |
-
"grid_auto_rows": null,
|
248 |
-
"grid_column": null,
|
249 |
-
"grid_gap": null,
|
250 |
-
"grid_row": null,
|
251 |
-
"grid_template_areas": null,
|
252 |
-
"grid_template_columns": null,
|
253 |
-
"grid_template_rows": null,
|
254 |
-
"height": null,
|
255 |
-
"justify_content": null,
|
256 |
-
"justify_items": null,
|
257 |
-
"left": null,
|
258 |
-
"margin": null,
|
259 |
-
"max_height": null,
|
260 |
-
"max_width": null,
|
261 |
-
"min_height": null,
|
262 |
-
"min_width": null,
|
263 |
-
"object_fit": null,
|
264 |
-
"object_position": null,
|
265 |
-
"order": null,
|
266 |
-
"overflow": null,
|
267 |
-
"overflow_x": null,
|
268 |
-
"overflow_y": null,
|
269 |
-
"padding": null,
|
270 |
-
"right": null,
|
271 |
-
"top": null,
|
272 |
-
"visibility": null,
|
273 |
-
"width": null
|
274 |
-
}
|
275 |
-
},
|
276 |
-
"62bd6d393ca74193bded59a8ebd0a749": {
|
277 |
-
"model_module": "@jupyter-widgets/controls",
|
278 |
-
"model_name": "ProgressStyleModel",
|
279 |
-
"model_module_version": "1.5.0",
|
280 |
-
"state": {
|
281 |
-
"_model_module": "@jupyter-widgets/controls",
|
282 |
-
"_model_module_version": "1.5.0",
|
283 |
-
"_model_name": "ProgressStyleModel",
|
284 |
-
"_view_count": null,
|
285 |
-
"_view_module": "@jupyter-widgets/base",
|
286 |
-
"_view_module_version": "1.2.0",
|
287 |
-
"_view_name": "StyleView",
|
288 |
-
"bar_color": null,
|
289 |
-
"description_width": ""
|
290 |
-
}
|
291 |
-
},
|
292 |
-
"475c5c4fc6eb404180d7b69d75f797ea": {
|
293 |
-
"model_module": "@jupyter-widgets/base",
|
294 |
-
"model_name": "LayoutModel",
|
295 |
-
"model_module_version": "1.2.0",
|
296 |
-
"state": {
|
297 |
-
"_model_module": "@jupyter-widgets/base",
|
298 |
-
"_model_module_version": "1.2.0",
|
299 |
-
"_model_name": "LayoutModel",
|
300 |
-
"_view_count": null,
|
301 |
-
"_view_module": "@jupyter-widgets/base",
|
302 |
-
"_view_module_version": "1.2.0",
|
303 |
-
"_view_name": "LayoutView",
|
304 |
-
"align_content": null,
|
305 |
-
"align_items": null,
|
306 |
-
"align_self": null,
|
307 |
-
"border": null,
|
308 |
-
"bottom": null,
|
309 |
-
"display": null,
|
310 |
-
"flex": null,
|
311 |
-
"flex_flow": null,
|
312 |
-
"grid_area": null,
|
313 |
-
"grid_auto_columns": null,
|
314 |
-
"grid_auto_flow": null,
|
315 |
-
"grid_auto_rows": null,
|
316 |
-
"grid_column": null,
|
317 |
-
"grid_gap": null,
|
318 |
-
"grid_row": null,
|
319 |
-
"grid_template_areas": null,
|
320 |
-
"grid_template_columns": null,
|
321 |
-
"grid_template_rows": null,
|
322 |
-
"height": null,
|
323 |
-
"justify_content": null,
|
324 |
-
"justify_items": null,
|
325 |
-
"left": null,
|
326 |
-
"margin": null,
|
327 |
-
"max_height": null,
|
328 |
-
"max_width": null,
|
329 |
-
"min_height": null,
|
330 |
-
"min_width": null,
|
331 |
-
"object_fit": null,
|
332 |
-
"object_position": null,
|
333 |
-
"order": null,
|
334 |
-
"overflow": null,
|
335 |
-
"overflow_x": null,
|
336 |
-
"overflow_y": null,
|
337 |
-
"padding": null,
|
338 |
-
"right": null,
|
339 |
-
"top": null,
|
340 |
-
"visibility": null,
|
341 |
-
"width": null
|
342 |
-
}
|
343 |
-
},
|
344 |
-
"b815fc17c9ee4913b5cb452653ff1af9": {
|
345 |
-
"model_module": "@jupyter-widgets/controls",
|
346 |
-
"model_name": "DescriptionStyleModel",
|
347 |
-
"model_module_version": "1.5.0",
|
348 |
-
"state": {
|
349 |
-
"_model_module": "@jupyter-widgets/controls",
|
350 |
-
"_model_module_version": "1.5.0",
|
351 |
-
"_model_name": "DescriptionStyleModel",
|
352 |
-
"_view_count": null,
|
353 |
-
"_view_module": "@jupyter-widgets/base",
|
354 |
-
"_view_module_version": "1.2.0",
|
355 |
-
"_view_name": "StyleView",
|
356 |
-
"description_width": ""
|
357 |
-
}
|
358 |
-
},
|
359 |
-
"8cac4d03da1044d6adb8b62752ed6775": {
|
360 |
-
"model_module": "@jupyter-widgets/controls",
|
361 |
-
"model_name": "HBoxModel",
|
362 |
-
"model_module_version": "1.5.0",
|
363 |
-
"state": {
|
364 |
-
"_dom_classes": [],
|
365 |
-
"_model_module": "@jupyter-widgets/controls",
|
366 |
-
"_model_module_version": "1.5.0",
|
367 |
-
"_model_name": "HBoxModel",
|
368 |
-
"_view_count": null,
|
369 |
-
"_view_module": "@jupyter-widgets/controls",
|
370 |
-
"_view_module_version": "1.5.0",
|
371 |
-
"_view_name": "HBoxView",
|
372 |
-
"box_style": "",
|
373 |
-
"children": [
|
374 |
-
"IPY_MODEL_a201091e2f9b4f6c8a7d780dde854134",
|
375 |
-
"IPY_MODEL_16e2c22fb42e41e8b810c4e659091d37",
|
376 |
-
"IPY_MODEL_a1f5e814104646cbac5db19fdbcfccb2"
|
377 |
-
],
|
378 |
-
"layout": "IPY_MODEL_3186fb1553884a7da72a387f1e00eca5"
|
379 |
-
}
|
380 |
-
},
|
381 |
-
"a201091e2f9b4f6c8a7d780dde854134": {
|
382 |
-
"model_module": "@jupyter-widgets/controls",
|
383 |
-
"model_name": "HTMLModel",
|
384 |
-
"model_module_version": "1.5.0",
|
385 |
-
"state": {
|
386 |
-
"_dom_classes": [],
|
387 |
-
"_model_module": "@jupyter-widgets/controls",
|
388 |
-
"_model_module_version": "1.5.0",
|
389 |
-
"_model_name": "HTMLModel",
|
390 |
-
"_view_count": null,
|
391 |
-
"_view_module": "@jupyter-widgets/controls",
|
392 |
-
"_view_module_version": "1.5.0",
|
393 |
-
"_view_name": "HTMLView",
|
394 |
-
"description": "",
|
395 |
-
"description_tooltip": null,
|
396 |
-
"layout": "IPY_MODEL_875fbcb976bf486092d3c6f483b9e042",
|
397 |
-
"placeholder": "",
|
398 |
-
"style": "IPY_MODEL_e2a24c0c90b149508715998b1cf301f7",
|
399 |
-
"value": "tokenizer_config.json: 100%"
|
400 |
-
}
|
401 |
-
},
|
402 |
-
"16e2c22fb42e41e8b810c4e659091d37": {
|
403 |
-
"model_module": "@jupyter-widgets/controls",
|
404 |
-
"model_name": "FloatProgressModel",
|
405 |
-
"model_module_version": "1.5.0",
|
406 |
-
"state": {
|
407 |
-
"_dom_classes": [],
|
408 |
-
"_model_module": "@jupyter-widgets/controls",
|
409 |
-
"_model_module_version": "1.5.0",
|
410 |
-
"_model_name": "FloatProgressModel",
|
411 |
-
"_view_count": null,
|
412 |
-
"_view_module": "@jupyter-widgets/controls",
|
413 |
-
"_view_module_version": "1.5.0",
|
414 |
-
"_view_name": "ProgressView",
|
415 |
-
"bar_style": "success",
|
416 |
-
"description": "",
|
417 |
-
"description_tooltip": null,
|
418 |
-
"layout": "IPY_MODEL_c730ecd68ae547b1822039b86bd22322",
|
419 |
-
"max": 3071,
|
420 |
-
"min": 0,
|
421 |
-
"orientation": "horizontal",
|
422 |
-
"style": "IPY_MODEL_0cd73c61a5e04ae1854eb1f1c4d92317",
|
423 |
-
"value": 3071
|
424 |
-
}
|
425 |
-
},
|
426 |
-
"a1f5e814104646cbac5db19fdbcfccb2": {
|
427 |
-
"model_module": "@jupyter-widgets/controls",
|
428 |
-
"model_name": "HTMLModel",
|
429 |
-
"model_module_version": "1.5.0",
|
430 |
-
"state": {
|
431 |
-
"_dom_classes": [],
|
432 |
-
"_model_module": "@jupyter-widgets/controls",
|
433 |
-
"_model_module_version": "1.5.0",
|
434 |
-
"_model_name": "HTMLModel",
|
435 |
-
"_view_count": null,
|
436 |
-
"_view_module": "@jupyter-widgets/controls",
|
437 |
-
"_view_module_version": "1.5.0",
|
438 |
-
"_view_name": "HTMLView",
|
439 |
-
"description": "",
|
440 |
-
"description_tooltip": null,
|
441 |
-
"layout": "IPY_MODEL_c46a9a3e8c7d4560ae71226920e17acd",
|
442 |
-
"placeholder": "",
|
443 |
-
"style": "IPY_MODEL_2303aed14ff44e178ed20edf1f2e5359",
|
444 |
-
"value": " 3.07k/3.07k [00:00\u0026lt;00:00, 267kB/s]"
|
445 |
-
}
|
446 |
-
},
|
447 |
-
"3186fb1553884a7da72a387f1e00eca5": {
|
448 |
-
"model_module": "@jupyter-widgets/base",
|
449 |
-
"model_name": "LayoutModel",
|
450 |
-
"model_module_version": "1.2.0",
|
451 |
-
"state": {
|
452 |
-
"_model_module": "@jupyter-widgets/base",
|
453 |
-
"_model_module_version": "1.2.0",
|
454 |
-
"_model_name": "LayoutModel",
|
455 |
-
"_view_count": null,
|
456 |
-
"_view_module": "@jupyter-widgets/base",
|
457 |
-
"_view_module_version": "1.2.0",
|
458 |
-
"_view_name": "LayoutView",
|
459 |
-
"align_content": null,
|
460 |
-
"align_items": null,
|
461 |
-
"align_self": null,
|
462 |
-
"border": null,
|
463 |
-
"bottom": null,
|
464 |
-
"display": null,
|
465 |
-
"flex": null,
|
466 |
-
"flex_flow": null,
|
467 |
-
"grid_area": null,
|
468 |
-
"grid_auto_columns": null,
|
469 |
-
"grid_auto_flow": null,
|
470 |
-
"grid_auto_rows": null,
|
471 |
-
"grid_column": null,
|
472 |
-
"grid_gap": null,
|
473 |
-
"grid_row": null,
|
474 |
-
"grid_template_areas": null,
|
475 |
-
"grid_template_columns": null,
|
476 |
-
"grid_template_rows": null,
|
477 |
-
"height": null,
|
478 |
-
"justify_content": null,
|
479 |
-
"justify_items": null,
|
480 |
-
"left": null,
|
481 |
-
"margin": null,
|
482 |
-
"max_height": null,
|
483 |
-
"max_width": null,
|
484 |
-
"min_height": null,
|
485 |
-
"min_width": null,
|
486 |
-
"object_fit": null,
|
487 |
-
"object_position": null,
|
488 |
-
"order": null,
|
489 |
-
"overflow": null,
|
490 |
-
"overflow_x": null,
|
491 |
-
"overflow_y": null,
|
492 |
-
"padding": null,
|
493 |
-
"right": null,
|
494 |
-
"top": null,
|
495 |
-
"visibility": null,
|
496 |
-
"width": null
|
497 |
-
}
|
498 |
-
},
|
499 |
-
"875fbcb976bf486092d3c6f483b9e042": {
|
500 |
-
"model_module": "@jupyter-widgets/base",
|
501 |
-
"model_name": "LayoutModel",
|
502 |
-
"model_module_version": "1.2.0",
|
503 |
-
"state": {
|
504 |
-
"_model_module": "@jupyter-widgets/base",
|
505 |
-
"_model_module_version": "1.2.0",
|
506 |
-
"_model_name": "LayoutModel",
|
507 |
-
"_view_count": null,
|
508 |
-
"_view_module": "@jupyter-widgets/base",
|
509 |
-
"_view_module_version": "1.2.0",
|
510 |
-
"_view_name": "LayoutView",
|
511 |
-
"align_content": null,
|
512 |
-
"align_items": null,
|
513 |
-
"align_self": null,
|
514 |
-
"border": null,
|
515 |
-
"bottom": null,
|
516 |
-
"display": null,
|
517 |
-
"flex": null,
|
518 |
-
"flex_flow": null,
|
519 |
-
"grid_area": null,
|
520 |
-
"grid_auto_columns": null,
|
521 |
-
"grid_auto_flow": null,
|
522 |
-
"grid_auto_rows": null,
|
523 |
-
"grid_column": null,
|
524 |
-
"grid_gap": null,
|
525 |
-
"grid_row": null,
|
526 |
-
"grid_template_areas": null,
|
527 |
-
"grid_template_columns": null,
|
528 |
-
"grid_template_rows": null,
|
529 |
-
"height": null,
|
530 |
-
"justify_content": null,
|
531 |
-
"justify_items": null,
|
532 |
-
"left": null,
|
533 |
-
"margin": null,
|
534 |
-
"max_height": null,
|
535 |
-
"max_width": null,
|
536 |
-
"min_height": null,
|
537 |
-
"min_width": null,
|
538 |
-
"object_fit": null,
|
539 |
-
"object_position": null,
|
540 |
-
"order": null,
|
541 |
-
"overflow": null,
|
542 |
-
"overflow_x": null,
|
543 |
-
"overflow_y": null,
|
544 |
-
"padding": null,
|
545 |
-
"right": null,
|
546 |
-
"top": null,
|
547 |
-
"visibility": null,
|
548 |
-
"width": null
|
549 |
-
}
|
550 |
-
},
|
551 |
-
"e2a24c0c90b149508715998b1cf301f7": {
|
552 |
-
"model_module": "@jupyter-widgets/controls",
|
553 |
-
"model_name": "DescriptionStyleModel",
|
554 |
-
"model_module_version": "1.5.0",
|
555 |
-
"state": {
|
556 |
-
"_model_module": "@jupyter-widgets/controls",
|
557 |
-
"_model_module_version": "1.5.0",
|
558 |
-
"_model_name": "DescriptionStyleModel",
|
559 |
-
"_view_count": null,
|
560 |
-
"_view_module": "@jupyter-widgets/base",
|
561 |
-
"_view_module_version": "1.2.0",
|
562 |
-
"_view_name": "StyleView",
|
563 |
-
"description_width": ""
|
564 |
-
}
|
565 |
-
},
|
566 |
-
"c730ecd68ae547b1822039b86bd22322": {
|
567 |
-
"model_module": "@jupyter-widgets/base",
|
568 |
-
"model_name": "LayoutModel",
|
569 |
-
"model_module_version": "1.2.0",
|
570 |
-
"state": {
|
571 |
-
"_model_module": "@jupyter-widgets/base",
|
572 |
-
"_model_module_version": "1.2.0",
|
573 |
-
"_model_name": "LayoutModel",
|
574 |
-
"_view_count": null,
|
575 |
-
"_view_module": "@jupyter-widgets/base",
|
576 |
-
"_view_module_version": "1.2.0",
|
577 |
-
"_view_name": "LayoutView",
|
578 |
-
"align_content": null,
|
579 |
-
"align_items": null,
|
580 |
-
"align_self": null,
|
581 |
-
"border": null,
|
582 |
-
"bottom": null,
|
583 |
-
"display": null,
|
584 |
-
"flex": null,
|
585 |
-
"flex_flow": null,
|
586 |
-
"grid_area": null,
|
587 |
-
"grid_auto_columns": null,
|
588 |
-
"grid_auto_flow": null,
|
589 |
-
"grid_auto_rows": null,
|
590 |
-
"grid_column": null,
|
591 |
-
"grid_gap": null,
|
592 |
-
"grid_row": null,
|
593 |
-
"grid_template_areas": null,
|
594 |
-
"grid_template_columns": null,
|
595 |
-
"grid_template_rows": null,
|
596 |
-
"height": null,
|
597 |
-
"justify_content": null,
|
598 |
-
"justify_items": null,
|
599 |
-
"left": null,
|
600 |
-
"margin": null,
|
601 |
-
"max_height": null,
|
602 |
-
"max_width": null,
|
603 |
-
"min_height": null,
|
604 |
-
"min_width": null,
|
605 |
-
"object_fit": null,
|
606 |
-
"object_position": null,
|
607 |
-
"order": null,
|
608 |
-
"overflow": null,
|
609 |
-
"overflow_x": null,
|
610 |
-
"overflow_y": null,
|
611 |
-
"padding": null,
|
612 |
-
"right": null,
|
613 |
-
"top": null,
|
614 |
-
"visibility": null,
|
615 |
-
"width": null
|
616 |
-
}
|
617 |
-
},
|
618 |
-
"0cd73c61a5e04ae1854eb1f1c4d92317": {
|
619 |
-
"model_module": "@jupyter-widgets/controls",
|
620 |
-
"model_name": "ProgressStyleModel",
|
621 |
-
"model_module_version": "1.5.0",
|
622 |
-
"state": {
|
623 |
-
"_model_module": "@jupyter-widgets/controls",
|
624 |
-
"_model_module_version": "1.5.0",
|
625 |
-
"_model_name": "ProgressStyleModel",
|
626 |
-
"_view_count": null,
|
627 |
-
"_view_module": "@jupyter-widgets/base",
|
628 |
-
"_view_module_version": "1.2.0",
|
629 |
-
"_view_name": "StyleView",
|
630 |
-
"bar_color": null,
|
631 |
-
"description_width": ""
|
632 |
-
}
|
633 |
-
},
|
634 |
-
"c46a9a3e8c7d4560ae71226920e17acd": {
|
635 |
-
"model_module": "@jupyter-widgets/base",
|
636 |
-
"model_name": "LayoutModel",
|
637 |
-
"model_module_version": "1.2.0",
|
638 |
-
"state": {
|
639 |
-
"_model_module": "@jupyter-widgets/base",
|
640 |
-
"_model_module_version": "1.2.0",
|
641 |
-
"_model_name": "LayoutModel",
|
642 |
-
"_view_count": null,
|
643 |
-
"_view_module": "@jupyter-widgets/base",
|
644 |
-
"_view_module_version": "1.2.0",
|
645 |
-
"_view_name": "LayoutView",
|
646 |
-
"align_content": null,
|
647 |
-
"align_items": null,
|
648 |
-
"align_self": null,
|
649 |
-
"border": null,
|
650 |
-
"bottom": null,
|
651 |
-
"display": null,
|
652 |
-
"flex": null,
|
653 |
-
"flex_flow": null,
|
654 |
-
"grid_area": null,
|
655 |
-
"grid_auto_columns": null,
|
656 |
-
"grid_auto_flow": null,
|
657 |
-
"grid_auto_rows": null,
|
658 |
-
"grid_column": null,
|
659 |
-
"grid_gap": null,
|
660 |
-
"grid_row": null,
|
661 |
-
"grid_template_areas": null,
|
662 |
-
"grid_template_columns": null,
|
663 |
-
"grid_template_rows": null,
|
664 |
-
"height": null,
|
665 |
-
"justify_content": null,
|
666 |
-
"justify_items": null,
|
667 |
-
"left": null,
|
668 |
-
"margin": null,
|
669 |
-
"max_height": null,
|
670 |
-
"max_width": null,
|
671 |
-
"min_height": null,
|
672 |
-
"min_width": null,
|
673 |
-
"object_fit": null,
|
674 |
-
"object_position": null,
|
675 |
-
"order": null,
|
676 |
-
"overflow": null,
|
677 |
-
"overflow_x": null,
|
678 |
-
"overflow_y": null,
|
679 |
-
"padding": null,
|
680 |
-
"right": null,
|
681 |
-
"top": null,
|
682 |
-
"visibility": null,
|
683 |
-
"width": null
|
684 |
-
}
|
685 |
-
},
|
686 |
-
"2303aed14ff44e178ed20edf1f2e5359": {
|
687 |
-
"model_module": "@jupyter-widgets/controls",
|
688 |
-
"model_name": "DescriptionStyleModel",
|
689 |
-
"model_module_version": "1.5.0",
|
690 |
-
"state": {
|
691 |
-
"_model_module": "@jupyter-widgets/controls",
|
692 |
-
"_model_module_version": "1.5.0",
|
693 |
-
"_model_name": "DescriptionStyleModel",
|
694 |
-
"_view_count": null,
|
695 |
-
"_view_module": "@jupyter-widgets/base",
|
696 |
-
"_view_module_version": "1.2.0",
|
697 |
-
"_view_name": "StyleView",
|
698 |
-
"description_width": ""
|
699 |
-
}
|
700 |
-
},
|
701 |
-
"072e1baca7d64766807df5454dc9e3cc": {
|
702 |
-
"model_module": "@jupyter-widgets/controls",
|
703 |
-
"model_name": "HBoxModel",
|
704 |
-
"model_module_version": "1.5.0",
|
705 |
-
"state": {
|
706 |
-
"_dom_classes": [],
|
707 |
-
"_model_module": "@jupyter-widgets/controls",
|
708 |
-
"_model_module_version": "1.5.0",
|
709 |
-
"_model_name": "HBoxModel",
|
710 |
-
"_view_count": null,
|
711 |
-
"_view_module": "@jupyter-widgets/controls",
|
712 |
-
"_view_module_version": "1.5.0",
|
713 |
-
"_view_name": "HBoxView",
|
714 |
-
"box_style": "",
|
715 |
-
"children": [
|
716 |
-
"IPY_MODEL_6da37a13974c4c3890c7676d194021bc",
|
717 |
-
"IPY_MODEL_2f5b6f1af091405287c35c53ad169354",
|
718 |
-
"IPY_MODEL_b977fb3e42a14fe1bec47426ae1efded"
|
719 |
-
],
|
720 |
-
"layout": "IPY_MODEL_a063adb2cc1c44438d5f631fb16297ae"
|
721 |
-
}
|
722 |
-
},
|
723 |
-
"6da37a13974c4c3890c7676d194021bc": {
|
724 |
-
"model_module": "@jupyter-widgets/controls",
|
725 |
-
"model_name": "HTMLModel",
|
726 |
-
"model_module_version": "1.5.0",
|
727 |
-
"state": {
|
728 |
-
"_dom_classes": [],
|
729 |
-
"_model_module": "@jupyter-widgets/controls",
|
730 |
-
"_model_module_version": "1.5.0",
|
731 |
-
"_model_name": "HTMLModel",
|
732 |
-
"_view_count": null,
|
733 |
-
"_view_module": "@jupyter-widgets/controls",
|
734 |
-
"_view_module_version": "1.5.0",
|
735 |
-
"_view_name": "HTMLView",
|
736 |
-
"description": "",
|
737 |
-
"description_tooltip": null,
|
738 |
-
"layout": "IPY_MODEL_50f86e2ac8444d1986d8d9afe9fcee37",
|
739 |
-
"placeholder": "",
|
740 |
-
"style": "IPY_MODEL_da323d8a744a43d8901f19c48b1e1223",
|
741 |
-
"value": "tokenizer.json: 100%"
|
742 |
-
}
|
743 |
-
},
|
744 |
-
"2f5b6f1af091405287c35c53ad169354": {
|
745 |
-
"model_module": "@jupyter-widgets/controls",
|
746 |
-
"model_name": "FloatProgressModel",
|
747 |
-
"model_module_version": "1.5.0",
|
748 |
-
"state": {
|
749 |
-
"_dom_classes": [],
|
750 |
-
"_model_module": "@jupyter-widgets/controls",
|
751 |
-
"_model_module_version": "1.5.0",
|
752 |
-
"_model_name": "FloatProgressModel",
|
753 |
-
"_view_count": null,
|
754 |
-
"_view_module": "@jupyter-widgets/controls",
|
755 |
-
"_view_module_version": "1.5.0",
|
756 |
-
"_view_name": "ProgressView",
|
757 |
-
"bar_style": "success",
|
758 |
-
"description": "",
|
759 |
-
"description_tooltip": null,
|
760 |
-
"layout": "IPY_MODEL_69afe592335b4d73b51b63e4c56407fc",
|
761 |
-
"max": 7031660,
|
762 |
-
"min": 0,
|
763 |
-
"orientation": "horizontal",
|
764 |
-
"style": "IPY_MODEL_f3605ab95cbf4ebda9a678a0788e9682",
|
765 |
-
"value": 7031660
|
766 |
-
}
|
767 |
-
},
|
768 |
-
"b977fb3e42a14fe1bec47426ae1efded": {
|
769 |
-
"model_module": "@jupyter-widgets/controls",
|
770 |
-
"model_name": "HTMLModel",
|
771 |
-
"model_module_version": "1.5.0",
|
772 |
-
"state": {
|
773 |
-
"_dom_classes": [],
|
774 |
-
"_model_module": "@jupyter-widgets/controls",
|
775 |
-
"_model_module_version": "1.5.0",
|
776 |
-
"_model_name": "HTMLModel",
|
777 |
-
"_view_count": null,
|
778 |
-
"_view_module": "@jupyter-widgets/controls",
|
779 |
-
"_view_module_version": "1.5.0",
|
780 |
-
"_view_name": "HTMLView",
|
781 |
-
"description": "",
|
782 |
-
"description_tooltip": null,
|
783 |
-
"layout": "IPY_MODEL_7d2023b2a9054a3991983a30fdc6555b",
|
784 |
-
"placeholder": "",
|
785 |
-
"style": "IPY_MODEL_17d028b387724317ae9994819a97a3a4",
|
786 |
-
"value": " 7.03M/7.03M [00:00\u0026lt;00:00, 28.7MB/s]"
|
787 |
-
}
|
788 |
-
},
|
789 |
-
"a063adb2cc1c44438d5f631fb16297ae": {
|
790 |
-
"model_module": "@jupyter-widgets/base",
|
791 |
-
"model_name": "LayoutModel",
|
792 |
-
"model_module_version": "1.2.0",
|
793 |
-
"state": {
|
794 |
-
"_model_module": "@jupyter-widgets/base",
|
795 |
-
"_model_module_version": "1.2.0",
|
796 |
-
"_model_name": "LayoutModel",
|
797 |
-
"_view_count": null,
|
798 |
-
"_view_module": "@jupyter-widgets/base",
|
799 |
-
"_view_module_version": "1.2.0",
|
800 |
-
"_view_name": "LayoutView",
|
801 |
-
"align_content": null,
|
802 |
-
"align_items": null,
|
803 |
-
"align_self": null,
|
804 |
-
"border": null,
|
805 |
-
"bottom": null,
|
806 |
-
"display": null,
|
807 |
-
"flex": null,
|
808 |
-
"flex_flow": null,
|
809 |
-
"grid_area": null,
|
810 |
-
"grid_auto_columns": null,
|
811 |
-
"grid_auto_flow": null,
|
812 |
-
"grid_auto_rows": null,
|
813 |
-
"grid_column": null,
|
814 |
-
"grid_gap": null,
|
815 |
-
"grid_row": null,
|
816 |
-
"grid_template_areas": null,
|
817 |
-
"grid_template_columns": null,
|
818 |
-
"grid_template_rows": null,
|
819 |
-
"height": null,
|
820 |
-
"justify_content": null,
|
821 |
-
"justify_items": null,
|
822 |
-
"left": null,
|
823 |
-
"margin": null,
|
824 |
-
"max_height": null,
|
825 |
-
"max_width": null,
|
826 |
-
"min_height": null,
|
827 |
-
"min_width": null,
|
828 |
-
"object_fit": null,
|
829 |
-
"object_position": null,
|
830 |
-
"order": null,
|
831 |
-
"overflow": null,
|
832 |
-
"overflow_x": null,
|
833 |
-
"overflow_y": null,
|
834 |
-
"padding": null,
|
835 |
-
"right": null,
|
836 |
-
"top": null,
|
837 |
-
"visibility": null,
|
838 |
-
"width": null
|
839 |
-
}
|
840 |
-
},
|
841 |
-
"50f86e2ac8444d1986d8d9afe9fcee37": {
|
842 |
-
"model_module": "@jupyter-widgets/base",
|
843 |
-
"model_name": "LayoutModel",
|
844 |
-
"model_module_version": "1.2.0",
|
845 |
-
"state": {
|
846 |
-
"_model_module": "@jupyter-widgets/base",
|
847 |
-
"_model_module_version": "1.2.0",
|
848 |
-
"_model_name": "LayoutModel",
|
849 |
-
"_view_count": null,
|
850 |
-
"_view_module": "@jupyter-widgets/base",
|
851 |
-
"_view_module_version": "1.2.0",
|
852 |
-
"_view_name": "LayoutView",
|
853 |
-
"align_content": null,
|
854 |
-
"align_items": null,
|
855 |
-
"align_self": null,
|
856 |
-
"border": null,
|
857 |
-
"bottom": null,
|
858 |
-
"display": null,
|
859 |
-
"flex": null,
|
860 |
-
"flex_flow": null,
|
861 |
-
"grid_area": null,
|
862 |
-
"grid_auto_columns": null,
|
863 |
-
"grid_auto_flow": null,
|
864 |
-
"grid_auto_rows": null,
|
865 |
-
"grid_column": null,
|
866 |
-
"grid_gap": null,
|
867 |
-
"grid_row": null,
|
868 |
-
"grid_template_areas": null,
|
869 |
-
"grid_template_columns": null,
|
870 |
-
"grid_template_rows": null,
|
871 |
-
"height": null,
|
872 |
-
"justify_content": null,
|
873 |
-
"justify_items": null,
|
874 |
-
"left": null,
|
875 |
-
"margin": null,
|
876 |
-
"max_height": null,
|
877 |
-
"max_width": null,
|
878 |
-
"min_height": null,
|
879 |
-
"min_width": null,
|
880 |
-
"object_fit": null,
|
881 |
-
"object_position": null,
|
882 |
-
"order": null,
|
883 |
-
"overflow": null,
|
884 |
-
"overflow_x": null,
|
885 |
-
"overflow_y": null,
|
886 |
-
"padding": null,
|
887 |
-
"right": null,
|
888 |
-
"top": null,
|
889 |
-
"visibility": null,
|
890 |
-
"width": null
|
891 |
-
}
|
892 |
-
},
|
893 |
-
"da323d8a744a43d8901f19c48b1e1223": {
|
894 |
-
"model_module": "@jupyter-widgets/controls",
|
895 |
-
"model_name": "DescriptionStyleModel",
|
896 |
-
"model_module_version": "1.5.0",
|
897 |
-
"state": {
|
898 |
-
"_model_module": "@jupyter-widgets/controls",
|
899 |
-
"_model_module_version": "1.5.0",
|
900 |
-
"_model_name": "DescriptionStyleModel",
|
901 |
-
"_view_count": null,
|
902 |
-
"_view_module": "@jupyter-widgets/base",
|
903 |
-
"_view_module_version": "1.2.0",
|
904 |
-
"_view_name": "StyleView",
|
905 |
-
"description_width": ""
|
906 |
-
}
|
907 |
-
},
|
908 |
-
"69afe592335b4d73b51b63e4c56407fc": {
|
909 |
-
"model_module": "@jupyter-widgets/base",
|
910 |
-
"model_name": "LayoutModel",
|
911 |
-
"model_module_version": "1.2.0",
|
912 |
-
"state": {
|
913 |
-
"_model_module": "@jupyter-widgets/base",
|
914 |
-
"_model_module_version": "1.2.0",
|
915 |
-
"_model_name": "LayoutModel",
|
916 |
-
"_view_count": null,
|
917 |
-
"_view_module": "@jupyter-widgets/base",
|
918 |
-
"_view_module_version": "1.2.0",
|
919 |
-
"_view_name": "LayoutView",
|
920 |
-
"align_content": null,
|
921 |
-
"align_items": null,
|
922 |
-
"align_self": null,
|
923 |
-
"border": null,
|
924 |
-
"bottom": null,
|
925 |
-
"display": null,
|
926 |
-
"flex": null,
|
927 |
-
"flex_flow": null,
|
928 |
-
"grid_area": null,
|
929 |
-
"grid_auto_columns": null,
|
930 |
-
"grid_auto_flow": null,
|
931 |
-
"grid_auto_rows": null,
|
932 |
-
"grid_column": null,
|
933 |
-
"grid_gap": null,
|
934 |
-
"grid_row": null,
|
935 |
-
"grid_template_areas": null,
|
936 |
-
"grid_template_columns": null,
|
937 |
-
"grid_template_rows": null,
|
938 |
-
"height": null,
|
939 |
-
"justify_content": null,
|
940 |
-
"justify_items": null,
|
941 |
-
"left": null,
|
942 |
-
"margin": null,
|
943 |
-
"max_height": null,
|
944 |
-
"max_width": null,
|
945 |
-
"min_height": null,
|
946 |
-
"min_width": null,
|
947 |
-
"object_fit": null,
|
948 |
-
"object_position": null,
|
949 |
-
"order": null,
|
950 |
-
"overflow": null,
|
951 |
-
"overflow_x": null,
|
952 |
-
"overflow_y": null,
|
953 |
-
"padding": null,
|
954 |
-
"right": null,
|
955 |
-
"top": null,
|
956 |
-
"visibility": null,
|
957 |
-
"width": null
|
958 |
-
}
|
959 |
-
},
|
960 |
-
"f3605ab95cbf4ebda9a678a0788e9682": {
|
961 |
-
"model_module": "@jupyter-widgets/controls",
|
962 |
-
"model_name": "ProgressStyleModel",
|
963 |
-
"model_module_version": "1.5.0",
|
964 |
-
"state": {
|
965 |
-
"_model_module": "@jupyter-widgets/controls",
|
966 |
-
"_model_module_version": "1.5.0",
|
967 |
-
"_model_name": "ProgressStyleModel",
|
968 |
-
"_view_count": null,
|
969 |
-
"_view_module": "@jupyter-widgets/base",
|
970 |
-
"_view_module_version": "1.2.0",
|
971 |
-
"_view_name": "StyleView",
|
972 |
-
"bar_color": null,
|
973 |
-
"description_width": ""
|
974 |
-
}
|
975 |
-
},
|
976 |
-
"7d2023b2a9054a3991983a30fdc6555b": {
|
977 |
-
"model_module": "@jupyter-widgets/base",
|
978 |
-
"model_name": "LayoutModel",
|
979 |
-
"model_module_version": "1.2.0",
|
980 |
-
"state": {
|
981 |
-
"_model_module": "@jupyter-widgets/base",
|
982 |
-
"_model_module_version": "1.2.0",
|
983 |
-
"_model_name": "LayoutModel",
|
984 |
-
"_view_count": null,
|
985 |
-
"_view_module": "@jupyter-widgets/base",
|
986 |
-
"_view_module_version": "1.2.0",
|
987 |
-
"_view_name": "LayoutView",
|
988 |
-
"align_content": null,
|
989 |
-
"align_items": null,
|
990 |
-
"align_self": null,
|
991 |
-
"border": null,
|
992 |
-
"bottom": null,
|
993 |
-
"display": null,
|
994 |
-
"flex": null,
|
995 |
-
"flex_flow": null,
|
996 |
-
"grid_area": null,
|
997 |
-
"grid_auto_columns": null,
|
998 |
-
"grid_auto_flow": null,
|
999 |
-
"grid_auto_rows": null,
|
1000 |
-
"grid_column": null,
|
1001 |
-
"grid_gap": null,
|
1002 |
-
"grid_row": null,
|
1003 |
-
"grid_template_areas": null,
|
1004 |
-
"grid_template_columns": null,
|
1005 |
-
"grid_template_rows": null,
|
1006 |
-
"height": null,
|
1007 |
-
"justify_content": null,
|
1008 |
-
"justify_items": null,
|
1009 |
-
"left": null,
|
1010 |
-
"margin": null,
|
1011 |
-
"max_height": null,
|
1012 |
-
"max_width": null,
|
1013 |
-
"min_height": null,
|
1014 |
-
"min_width": null,
|
1015 |
-
"object_fit": null,
|
1016 |
-
"object_position": null,
|
1017 |
-
"order": null,
|
1018 |
-
"overflow": null,
|
1019 |
-
"overflow_x": null,
|
1020 |
-
"overflow_y": null,
|
1021 |
-
"padding": null,
|
1022 |
-
"right": null,
|
1023 |
-
"top": null,
|
1024 |
-
"visibility": null,
|
1025 |
-
"width": null
|
1026 |
-
}
|
1027 |
-
},
|
1028 |
-
"17d028b387724317ae9994819a97a3a4": {
|
1029 |
-
"model_module": "@jupyter-widgets/controls",
|
1030 |
-
"model_name": "DescriptionStyleModel",
|
1031 |
-
"model_module_version": "1.5.0",
|
1032 |
-
"state": {
|
1033 |
-
"_model_module": "@jupyter-widgets/controls",
|
1034 |
-
"_model_module_version": "1.5.0",
|
1035 |
-
"_model_name": "DescriptionStyleModel",
|
1036 |
-
"_view_count": null,
|
1037 |
-
"_view_module": "@jupyter-widgets/base",
|
1038 |
-
"_view_module_version": "1.2.0",
|
1039 |
-
"_view_name": "StyleView",
|
1040 |
-
"description_width": ""
|
1041 |
-
}
|
1042 |
-
}
|
1043 |
-
}
|
1044 |
}
|
1045 |
},
|
1046 |
"cells": [
|
1047 |
{
|
1048 |
"cell_type": "markdown",
|
1049 |
"source": [
|
1050 |
-
"#Install
|
1051 |
],
|
1052 |
"metadata": {
|
1053 |
"id": "39AMoCOa1ckc"
|
@@ -1057,373 +27,53 @@
|
|
1057 |
"metadata": {
|
1058 |
"id": "VoHxuLPu7s37"
|
1059 |
},
|
1060 |
-
"cell_type": "code",
|
1061 |
-
"source": [],
|
1062 |
-
"outputs": [],
|
1063 |
-
"execution_count": null
|
1064 |
-
},
|
1065 |
-
{
|
1066 |
-
"cell_type": "code",
|
1067 |
-
"source": [
|
1068 |
-
"!pip install ai-edge-litert"
|
1069 |
-
],
|
1070 |
-
"metadata": {
|
1071 |
-
"id": "43tAeO0AZ7zp",
|
1072 |
-
"colab": {
|
1073 |
-
"base_uri": "https://localhost:8080/"
|
1074 |
-
},
|
1075 |
-
"outputId": "76cd0d1b-7de2-4519-c0ae-1b9e6ee37653"
|
1076 |
-
},
|
1077 |
-
"execution_count": 1,
|
1078 |
-
"outputs": [
|
1079 |
-
{
|
1080 |
-
"output_type": "stream",
|
1081 |
-
"name": "stdout",
|
1082 |
-
"text": []
|
1083 |
-
}
|
1084 |
-
]
|
1085 |
-
},
|
1086 |
-
{
|
1087 |
-
"cell_type": "code",
|
1088 |
-
"source": [
|
1089 |
-
"from collections.abc import Sequence\n",
|
1090 |
-
"import sys\n",
|
1091 |
-
"from ai_edge_litert import interpreter as interpreter_lib\n",
|
1092 |
-
"import numpy as np\n",
|
1093 |
-
"from transformers import AutoTokenizer"
|
1094 |
-
],
|
1095 |
-
"metadata": {
|
1096 |
-
"id": "i6PMkMVBPr1p"
|
1097 |
-
},
|
1098 |
-
"execution_count": 2,
|
1099 |
-
"outputs": []
|
1100 |
-
},
|
1101 |
-
{
|
1102 |
-
"cell_type": "markdown",
|
1103 |
-
"source": [
|
1104 |
-
"# Download model files"
|
1105 |
-
],
|
1106 |
-
"metadata": {
|
1107 |
-
"id": "K5okZCTgYpUd"
|
1108 |
-
}
|
1109 |
-
},
|
1110 |
-
{
|
1111 |
"cell_type": "code",
|
1112 |
"source": [
|
1113 |
-
"
|
1114 |
-
"
|
1115 |
-
"model_path = hf_hub_download(\n",
|
1116 |
-
" repo_id=\"litert-community/Qwen2.5-1.5B-Instruct\",\n",
|
1117 |
-
" filename=\"Qwen2.5-1.5B-Instruct_seq128_q8_ekv1280.tflite\",\n",
|
1118 |
-
")"
|
1119 |
],
|
1120 |
-
"
|
1121 |
-
|
1122 |
-
"colab": {
|
1123 |
-
"base_uri": "https://localhost:8080/",
|
1124 |
-
"height": 49,
|
1125 |
-
"referenced_widgets": [
|
1126 |
-
"47cd47140dbb4e28a4f31d5632bfe82d",
|
1127 |
-
"7c0ddb1e0e3145f08ccb0c32b02c562f",
|
1128 |
-
"85c490db972b4d659caad513359a6700",
|
1129 |
-
"d61e96ae08d84414a638dd592f13fb18",
|
1130 |
-
"9e7f4734aa034e4aa5207b8a2498ee02",
|
1131 |
-
"df08ba8056fb47cb969e132087987e68",
|
1132 |
-
"470febc3af8348ef8611255e88401229",
|
1133 |
-
"39cedca11f574c01808acdc1be9aa68d",
|
1134 |
-
"62bd6d393ca74193bded59a8ebd0a749",
|
1135 |
-
"475c5c4fc6eb404180d7b69d75f797ea",
|
1136 |
-
"b815fc17c9ee4913b5cb452653ff1af9"
|
1137 |
-
]
|
1138 |
-
},
|
1139 |
-
"outputId": "d1d8ed1a-5ec6-4121-9d3c-fada487fc8ed"
|
1140 |
-
},
|
1141 |
-
"execution_count": 3,
|
1142 |
-
"outputs": []
|
1143 |
},
|
1144 |
{
|
1145 |
"cell_type": "markdown",
|
1146 |
"source": [
|
1147 |
-
"
|
1148 |
],
|
1149 |
"metadata": {
|
1150 |
-
"id": "
|
1151 |
}
|
1152 |
},
|
1153 |
{
|
1154 |
"cell_type": "code",
|
1155 |
"source": [
|
1156 |
-
"
|
1157 |
-
" custom_op_registerers=[\"pywrap_genai_ops.GenAIOpsRegisterer\"],\n",
|
1158 |
-
" model_path=model_path,\n",
|
1159 |
-
" num_threads=2,\n",
|
1160 |
-
" experimental_default_delegate_latest_features=True,\n",
|
1161 |
-
")\n",
|
1162 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"Qwen/Qwen2.5-1.5B-Instruct\")"
|
1163 |
],
|
1164 |
"metadata": {
|
1165 |
-
"id": "
|
1166 |
-
"colab": {
|
1167 |
-
"base_uri": "https://localhost:8080/",
|
1168 |
-
"height": 81,
|
1169 |
-
"referenced_widgets": [
|
1170 |
-
"8cac4d03da1044d6adb8b62752ed6775",
|
1171 |
-
"a201091e2f9b4f6c8a7d780dde854134",
|
1172 |
-
"16e2c22fb42e41e8b810c4e659091d37",
|
1173 |
-
"a1f5e814104646cbac5db19fdbcfccb2",
|
1174 |
-
"3186fb1553884a7da72a387f1e00eca5",
|
1175 |
-
"875fbcb976bf486092d3c6f483b9e042",
|
1176 |
-
"e2a24c0c90b149508715998b1cf301f7",
|
1177 |
-
"c730ecd68ae547b1822039b86bd22322",
|
1178 |
-
"0cd73c61a5e04ae1854eb1f1c4d92317",
|
1179 |
-
"c46a9a3e8c7d4560ae71226920e17acd",
|
1180 |
-
"2303aed14ff44e178ed20edf1f2e5359",
|
1181 |
-
"072e1baca7d64766807df5454dc9e3cc",
|
1182 |
-
"6da37a13974c4c3890c7676d194021bc",
|
1183 |
-
"2f5b6f1af091405287c35c53ad169354",
|
1184 |
-
"b977fb3e42a14fe1bec47426ae1efded",
|
1185 |
-
"a063adb2cc1c44438d5f631fb16297ae",
|
1186 |
-
"50f86e2ac8444d1986d8d9afe9fcee37",
|
1187 |
-
"da323d8a744a43d8901f19c48b1e1223",
|
1188 |
-
"69afe592335b4d73b51b63e4c56407fc",
|
1189 |
-
"f3605ab95cbf4ebda9a678a0788e9682",
|
1190 |
-
"7d2023b2a9054a3991983a30fdc6555b",
|
1191 |
-
"17d028b387724317ae9994819a97a3a4"
|
1192 |
-
]
|
1193 |
-
},
|
1194 |
-
"outputId": "e05a5944-5312-41c4-e38e-7e26a921e63c"
|
1195 |
},
|
1196 |
-
"execution_count":
|
1197 |
"outputs": []
|
1198 |
},
|
1199 |
{
|
1200 |
"cell_type": "markdown",
|
1201 |
"source": [
|
1202 |
-
"# Create
|
1203 |
],
|
1204 |
"metadata": {
|
1205 |
-
"id": "
|
1206 |
}
|
1207 |
},
|
1208 |
{
|
1209 |
"cell_type": "code",
|
1210 |
"source": [
|
1211 |
-
"
|
1212 |
-
"\
|
1213 |
-
" def __init__(self, interpreter, tokenizer):\n",
|
1214 |
-
" \"\"\"Initializes the pipeline.\"\"\"\n",
|
1215 |
-
" self._interpreter = interpreter\n",
|
1216 |
-
" self._tokenizer = tokenizer\n",
|
1217 |
-
"\n",
|
1218 |
-
" self._prefill_runner = None\n",
|
1219 |
-
" self._decode_runner = self._interpreter.get_signature_runner(\"decode\")\n",
|
1220 |
-
"\n",
|
1221 |
-
" def _init_prefill_runner(self, num_input_tokens: int):\n",
|
1222 |
-
" \"\"\"Initializes all the variables related to the prefill runner.\n",
|
1223 |
-
"\n",
|
1224 |
-
" This method initializes the following variables:\n",
|
1225 |
-
" - self._prefill_runner: The prefill runner based on the input size.\n",
|
1226 |
-
" - self._max_seq_len: The maximum sequence length supported by the model.\n",
|
1227 |
-
" - self._max_kv_cache_seq_len: The maximum sequence length supported by the\n",
|
1228 |
-
" KV cache.\n",
|
1229 |
-
"\n",
|
1230 |
-
" Args:\n",
|
1231 |
-
" num_input_tokens: The number of input tokens.\n",
|
1232 |
-
" \"\"\"\n",
|
1233 |
-
" if not self._interpreter:\n",
|
1234 |
-
" raise ValueError(\"Interpreter is not initialized.\")\n",
|
1235 |
-
"\n",
|
1236 |
-
" # Prefill runner related variables will be initialized in `predict_text` and\n",
|
1237 |
-
" # `compute_log_likelihood`.\n",
|
1238 |
-
" self._prefill_runner = self._get_prefill_runner(num_input_tokens)\n",
|
1239 |
-
" # input_token_shape has shape (batch, max_seq_len)\n",
|
1240 |
-
" input_token_shape = self._prefill_runner.get_input_details()[\"tokens\"][\n",
|
1241 |
-
" \"shape\"\n",
|
1242 |
-
" ]\n",
|
1243 |
-
" if len(input_token_shape) == 1:\n",
|
1244 |
-
" self._max_seq_len = input_token_shape[0]\n",
|
1245 |
-
" else:\n",
|
1246 |
-
" self._max_seq_len = input_token_shape[1]\n",
|
1247 |
-
"\n",
|
1248 |
-
" # kv cache input has shape [batch=1, seq_len, num_heads, dim].\n",
|
1249 |
-
" kv_cache_shape = self._prefill_runner.get_input_details()[\"kv_cache_k_0\"][\n",
|
1250 |
-
" \"shape\"\n",
|
1251 |
-
" ]\n",
|
1252 |
-
" self._max_kv_cache_seq_len = kv_cache_shape[1]\n",
|
1253 |
-
"\n",
|
1254 |
-
" def _init_kv_cache(self) -\u003e dict[str, np.ndarray]:\n",
|
1255 |
-
" if self._prefill_runner is None:\n",
|
1256 |
-
" raise ValueError(\"Prefill runner is not initialized.\")\n",
|
1257 |
-
" kv_cache = {}\n",
|
1258 |
-
" for input_key in self._prefill_runner.get_input_details().keys():\n",
|
1259 |
-
" if \"kv_cache\" in input_key:\n",
|
1260 |
-
" kv_cache[input_key] = np.zeros(\n",
|
1261 |
-
" self._prefill_runner.get_input_details()[input_key][\"shape\"],\n",
|
1262 |
-
" dtype=np.float32,\n",
|
1263 |
-
" )\n",
|
1264 |
-
" kv_cache[input_key] = np.zeros(\n",
|
1265 |
-
" self._prefill_runner.get_input_details()[input_key][\"shape\"],\n",
|
1266 |
-
" dtype=np.float32,\n",
|
1267 |
-
" )\n",
|
1268 |
-
" return kv_cache\n",
|
1269 |
-
"\n",
|
1270 |
-
" def _get_prefill_runner(self, num_input_tokens: int):\n",
|
1271 |
-
" \"\"\"Gets the prefill runner with the best suitable input size.\n",
|
1272 |
-
"\n",
|
1273 |
-
" Args:\n",
|
1274 |
-
" num_input_tokens: The number of input tokens.\n",
|
1275 |
-
"\n",
|
1276 |
-
" Returns:\n",
|
1277 |
-
" The prefill runner with the smallest input size.\n",
|
1278 |
-
" \"\"\"\n",
|
1279 |
-
" best_signature = None\n",
|
1280 |
-
" delta = sys.maxsize\n",
|
1281 |
-
" max_prefill_len = -1\n",
|
1282 |
-
" for key in self._interpreter.get_signature_list().keys():\n",
|
1283 |
-
" if \"prefill\" not in key:\n",
|
1284 |
-
" continue\n",
|
1285 |
-
" input_pos = self._interpreter.get_signature_runner(\n",
|
1286 |
-
" key\n",
|
1287 |
-
" ).get_input_details()[\"input_pos\"]\n",
|
1288 |
-
" # input_pos[\"shape\"] has shape (max_seq_len, )\n",
|
1289 |
-
" seq_size = input_pos[\"shape\"][0]\n",
|
1290 |
-
" max_prefill_len = max(max_prefill_len, seq_size)\n",
|
1291 |
-
" if num_input_tokens \u003c= seq_size and seq_size - num_input_tokens \u003c delta:\n",
|
1292 |
-
" delta = seq_size - num_input_tokens\n",
|
1293 |
-
" best_signature = key\n",
|
1294 |
-
" if best_signature is None:\n",
|
1295 |
-
" raise ValueError(\n",
|
1296 |
-
" \"The largest prefill length supported is %d, but we have %d number of\"\n",
|
1297 |
-
" \" input tokens\" % (max_prefill_len, num_input_tokens)\n",
|
1298 |
-
" )\n",
|
1299 |
-
" return self._interpreter.get_signature_runner(best_signature)\n",
|
1300 |
-
"\n",
|
1301 |
-
" def _run_prefill(\n",
|
1302 |
-
" self,\n",
|
1303 |
-
" prefill_token_ids: Sequence[int],\n",
|
1304 |
-
" ) -\u003e dict[str, np.ndarray]:\n",
|
1305 |
-
" \"\"\"Runs prefill and returns the kv cache.\n",
|
1306 |
-
"\n",
|
1307 |
-
" Args:\n",
|
1308 |
-
" prefill_token_ids: The token ids of the prefill input.\n",
|
1309 |
-
"\n",
|
1310 |
-
" Returns:\n",
|
1311 |
-
" The updated kv cache.\n",
|
1312 |
-
" \"\"\"\n",
|
1313 |
-
" if not self._prefill_runner:\n",
|
1314 |
-
" raise ValueError(\"Prefill runner is not initialized.\")\n",
|
1315 |
-
" prefill_token_length = len(prefill_token_ids)\n",
|
1316 |
-
" if prefill_token_length == 0:\n",
|
1317 |
-
" return self._init_kv_cache()\n",
|
1318 |
-
"\n",
|
1319 |
-
" # Prepare the input to be [1, max_seq_len].\n",
|
1320 |
-
" input_token_ids = [0] * self._max_seq_len\n",
|
1321 |
-
" input_token_ids[:prefill_token_length] = prefill_token_ids\n",
|
1322 |
-
" input_token_ids = np.asarray(input_token_ids, dtype=np.int32)\n",
|
1323 |
-
" input_token_ids = np.expand_dims(input_token_ids, axis=0)\n",
|
1324 |
-
"\n",
|
1325 |
-
" # Prepare the input position to be [max_seq_len].\n",
|
1326 |
-
" input_pos = [0] * self._max_seq_len\n",
|
1327 |
-
" input_pos[:prefill_token_length] = range(prefill_token_length)\n",
|
1328 |
-
" input_pos = np.asarray(input_pos, dtype=np.int32)\n",
|
1329 |
-
"\n",
|
1330 |
-
" # Initialize kv cache.\n",
|
1331 |
-
" prefill_inputs = self._init_kv_cache()\n",
|
1332 |
-
" prefill_inputs.update({\n",
|
1333 |
-
" \"tokens\": input_token_ids,\n",
|
1334 |
-
" \"input_pos\": input_pos,\n",
|
1335 |
-
" })\n",
|
1336 |
-
" prefill_outputs = self._prefill_runner(**prefill_inputs)\n",
|
1337 |
-
" if \"logits\" in prefill_outputs:\n",
|
1338 |
-
" # Prefill outputs includes logits and kv cache. We only output kv cache.\n",
|
1339 |
-
" prefill_outputs.pop(\"logits\")\n",
|
1340 |
-
"\n",
|
1341 |
-
" return prefill_outputs\n",
|
1342 |
-
"\n",
|
1343 |
-
" def _greedy_sampler(self, logits: np.ndarray) -\u003e int:\n",
|
1344 |
-
" return int(np.argmax(logits))\n",
|
1345 |
-
"\n",
|
1346 |
-
" def _run_decode(\n",
|
1347 |
-
" self,\n",
|
1348 |
-
" start_pos: int,\n",
|
1349 |
-
" start_token_id: int,\n",
|
1350 |
-
" kv_cache: dict[str, np.ndarray],\n",
|
1351 |
-
" max_decode_steps: int,\n",
|
1352 |
-
" ) -\u003e str:\n",
|
1353 |
-
" \"\"\"Runs decode and outputs the token ids from greedy sampler.\n",
|
1354 |
-
"\n",
|
1355 |
-
" Args:\n",
|
1356 |
-
" start_pos: The position of the first token of the decode input.\n",
|
1357 |
-
" start_token_id: The token id of the first token of the decode input.\n",
|
1358 |
-
" kv_cache: The kv cache from the prefill.\n",
|
1359 |
-
" max_decode_steps: The max decode steps.\n",
|
1360 |
-
"\n",
|
1361 |
-
" Returns:\n",
|
1362 |
-
" The token ids from the greedy sampler.\n",
|
1363 |
-
" \"\"\"\n",
|
1364 |
-
" next_pos = start_pos\n",
|
1365 |
-
" next_token = start_token_id\n",
|
1366 |
-
" decode_text = []\n",
|
1367 |
-
" decode_inputs = kv_cache\n",
|
1368 |
-
"\n",
|
1369 |
-
" for _ in range(max_decode_steps):\n",
|
1370 |
-
" decode_inputs.update({\n",
|
1371 |
-
" \"tokens\": np.array([[next_token]], dtype=np.int32),\n",
|
1372 |
-
" \"input_pos\": np.array([next_pos], dtype=np.int32),\n",
|
1373 |
-
" })\n",
|
1374 |
-
" decode_outputs = self._decode_runner(**decode_inputs)\n",
|
1375 |
-
" # Output logits has shape (batch=1, 1, vocab_size). We only take the first\n",
|
1376 |
-
" # element.\n",
|
1377 |
-
" logits = decode_outputs.pop(\"logits\")[0][0]\n",
|
1378 |
-
" next_token = self._greedy_sampler(logits)\n",
|
1379 |
-
" if next_token == self._tokenizer.eos_token_id:\n",
|
1380 |
-
" break\n",
|
1381 |
-
" decode_text.append(\n",
|
1382 |
-
" self._tokenizer.decode(next_token, skip_special_tokens=False)\n",
|
1383 |
-
" )\n",
|
1384 |
-
" print(decode_text[-1], end=\"\", flush=True)\n",
|
1385 |
-
" # Decode outputs includes logits and kv cache. We already poped out\n",
|
1386 |
-
" # logits, so the rest is kv cache. We pass the updated kv cache as input\n",
|
1387 |
-
" # to the next decode step.\n",
|
1388 |
-
" decode_inputs = decode_outputs\n",
|
1389 |
-
" next_pos += 1\n",
|
1390 |
-
"\n",
|
1391 |
-
" print() # print a new line at the end.\n",
|
1392 |
-
" return \"\".join(decode_text)\n",
|
1393 |
-
"\n",
|
1394 |
-
" def generate(self, prompt: str, max_decode_steps: int | None = None) -\u003e str:\n",
|
1395 |
-
" token_ids = self._tokenizer.encode(\n",
|
1396 |
-
" f\"<|endoftext|><|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n<|im_start|>user\\n{prompt}<|im_end|>\\n<|im_start|>assistant\\n\"\n",
|
1397 |
-
" )\n",
|
1398 |
-
" # Initialize the prefill runner with the suitable input size.\n",
|
1399 |
-
" self._init_prefill_runner(len(token_ids))\n",
|
1400 |
-
"\n",
|
1401 |
-
" # Run prefill.\n",
|
1402 |
-
" # Prefill up to the seond to the last token of the prompt, because the last\n",
|
1403 |
-
" # token of the prompt will be used to bootstrap decode.\n",
|
1404 |
-
" prefill_token_length = len(token_ids) - 1\n",
|
1405 |
-
"\n",
|
1406 |
-
" print(\"Running prefill\")\n",
|
1407 |
-
" kv_cache = self._run_prefill(token_ids[:prefill_token_length])\n",
|
1408 |
-
" # Run decode.\n",
|
1409 |
-
" print(\"Running decode\")\n",
|
1410 |
-
" actual_max_decode_steps = (\n",
|
1411 |
-
" self._max_kv_cache_seq_len - prefill_token_length - 1\n",
|
1412 |
-
" )\n",
|
1413 |
-
" if max_decode_steps is not None:\n",
|
1414 |
-
" actual_max_decode_steps = min(actual_max_decode_steps, max_decode_steps)\n",
|
1415 |
-
" decode_text = self._run_decode(\n",
|
1416 |
-
" prefill_token_length,\n",
|
1417 |
-
" token_ids[prefill_token_length],\n",
|
1418 |
-
" kv_cache,\n",
|
1419 |
-
" actual_max_decode_steps,\n",
|
1420 |
-
" )\n",
|
1421 |
-
" return decode_text"
|
1422 |
],
|
1423 |
"metadata": {
|
1424 |
-
"id": "
|
1425 |
},
|
1426 |
-
"execution_count":
|
1427 |
"outputs": []
|
1428 |
},
|
1429 |
{
|
@@ -1439,19 +89,8 @@
|
|
1439 |
"cell_type": "code",
|
1440 |
"source": [
|
1441 |
"# Disclaimer: Model performance demonstrated with the Python API in this notebook is not representative of performance on a local device.\n",
|
1442 |
-
"pipeline = LiteRTLlmPipeline(interpreter, tokenizer)"
|
1443 |
-
],
|
1444 |
-
"metadata": {
|
1445 |
-
"id": "AZhlDQWg61AL"
|
1446 |
-
},
|
1447 |
-
"execution_count": 16,
|
1448 |
-
"outputs": []
|
1449 |
-
},
|
1450 |
-
{
|
1451 |
-
"cell_type": "code",
|
1452 |
-
"source": [
|
1453 |
"prompt = \"What is the capital of France?\"\n",
|
1454 |
-
"output =
|
1455 |
],
|
1456 |
"metadata": {
|
1457 |
"id": "wT9BIiATkjzL"
|
|
|
11 |
},
|
12 |
"language_info": {
|
13 |
"name": "python"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
}
|
15 |
},
|
16 |
"cells": [
|
17 |
{
|
18 |
"cell_type": "markdown",
|
19 |
"source": [
|
20 |
+
"# Install Dependencies"
|
21 |
],
|
22 |
"metadata": {
|
23 |
"id": "39AMoCOa1ckc"
|
|
|
27 |
"metadata": {
|
28 |
"id": "VoHxuLPu7s37"
|
29 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"cell_type": "code",
|
31 |
"source": [
|
32 |
+
"! wget -q https://github.com/protocolbuffers/protobuf/releases/download/v3.19.0/protoc-3.19.0-linux-x86_64.zip\n",
|
33 |
+
"! unzip -o protoc-3.19.0-linux-x86_64.zip -d /usr/local/"
|
|
|
|
|
|
|
|
|
34 |
],
|
35 |
+
"outputs": [],
|
36 |
+
"execution_count": null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
},
|
38 |
{
|
39 |
"cell_type": "markdown",
|
40 |
"source": [
|
41 |
+
"## Install LiteRT Pipeline"
|
42 |
],
|
43 |
"metadata": {
|
44 |
+
"id": "qGAaAKzYK5ei"
|
45 |
}
|
46 |
},
|
47 |
{
|
48 |
"cell_type": "code",
|
49 |
"source": [
|
50 |
+
"!pip install git+https://github.com/google-ai-edge/ai-edge-apis.git#subdirectory=litert_tools"
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
],
|
52 |
"metadata": {
|
53 |
+
"id": "43tAeO0AZ7zp"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
},
|
55 |
+
"execution_count": null,
|
56 |
"outputs": []
|
57 |
},
|
58 |
{
|
59 |
"cell_type": "markdown",
|
60 |
"source": [
|
61 |
+
"# Create Pipeline from model file"
|
62 |
],
|
63 |
"metadata": {
|
64 |
+
"id": "K5okZCTgYpUd"
|
65 |
}
|
66 |
},
|
67 |
{
|
68 |
"cell_type": "code",
|
69 |
"source": [
|
70 |
+
"from litert_tools.pipeline import pipeline\n",
|
71 |
+
"runner = pipeline.load(\"litert-community/Qwen2.5-1.5B-Instruct\", \"Qwen2.5-1.5B-Instruct_seq128_q8_ekv1280.task\")"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
],
|
73 |
"metadata": {
|
74 |
+
"id": "3t47HAG2tvc3"
|
75 |
},
|
76 |
+
"execution_count": null,
|
77 |
"outputs": []
|
78 |
},
|
79 |
{
|
|
|
89 |
"cell_type": "code",
|
90 |
"source": [
|
91 |
"# Disclaimer: Model performance demonstrated with the Python API in this notebook is not representative of performance on a local device.\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
"prompt = \"What is the capital of France?\"\n",
|
93 |
+
"output = runner.generate(prompt, max_decode_steps=None)"
|
94 |
],
|
95 |
"metadata": {
|
96 |
"id": "wT9BIiATkjzL"
|