""" The script shows how to train Augmented SBERT (In-Domain) strategy for STSb dataset with Semantic Search Sampling. Methodology: Three steps are followed for AugSBERT data-augmentation strategy with Semantic Search - 1. Fine-tune cross-encoder (BERT) on gold STSb dataset 2. Fine-tuned Cross-encoder is used to label on Sem. Search sampled unlabeled pairs (silver STSb dataset) 3. Bi-encoder (SBERT) is finally fine-tuned on both gold + silver STSb dataset Citation: https://arxiv.org/abs/2010.08240 Usage: python train_sts_indomain_semantic.py OR python train_sts_indomain_semantic.py pretrained_transformer_model_name top_k python train_sts_indomain_semantic.py bert-base-uncased 3 """ from torch.utils.data import DataLoader from sentence_transformers import models, losses, util from sentence_transformers import LoggingHandler, SentenceTransformer from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample from datetime import datetime import logging import csv import torch import tqdm import sys import math import gzip import os #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout #You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased' top_k = int(sys.argv[2]) if len(sys.argv) > 2 else 3 batch_size = 16 num_epochs = 1 max_seq_length = 128 ###### Read Datasets ###### #Check if dataset exsist. If not, download and extract it sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) cross_encoder_path = 'output/cross-encoder/stsb_indomain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") bi_encoder_path = 'output/bi-encoder/stsb_augsbert_SS_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ###### Cross-encoder (simpletransformers) ###### logging.info("Loading cross-encoder model: {}".format(model_name)) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for cross-encoder model cross_encoder = CrossEncoder(model_name, num_labels=1) ###### Bi-encoder (sentence-transformers) ###### logging.info("Loading bi-encoder model: {}".format(model_name)) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) bi_encoder = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ##################################################### # # Step 1: Train cross-encoder model with STSbenchmark # ##################################################### logging.info("Step 1: Train cross-encoder: {} with STSbenchmark (gold dataset)".format(model_name)) gold_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 if row['split'] == 'dev': dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) elif row['split'] == 'test': test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) else: #As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set gold_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) gold_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score)) # We wrap gold_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the cross-encoder model cross_encoder.fit(train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=cross_encoder_path) ############################################################################ # # Step 2: Find silver pairs to label # ############################################################################ #### Top k similar sentences to be retrieved #### #### Larger the k, bigger the silver dataset #### logging.info("Step 2.1: Generate STSbenchmark (silver dataset) using pretrained SBERT \ model and top-{} semantic search combinations".format(top_k)) silver_data = [] sentences = set() for sample in gold_samples: sentences.update(sample.texts) sentences = list(sentences) # unique sentences sent2idx = {sentence: idx for idx, sentence in enumerate(sentences)} # storing id and sentence in dictionary duplicates = set((sent2idx[data.texts[0]], sent2idx[data.texts[1]]) for data in gold_samples) # not to include gold pairs of sentences again # For simplicity we use a pretrained model semantic_model_name = 'paraphrase-MiniLM-L6-v2' semantic_search_model = SentenceTransformer(semantic_model_name) logging.info("Encoding unique sentences with semantic search model: {}".format(semantic_model_name)) # encoding all unique sentences present in the training dataset embeddings = semantic_search_model.encode(sentences, batch_size=batch_size, convert_to_tensor=True) logging.info("Retrieve top-{} with semantic search model: {}".format(top_k, semantic_model_name)) # retrieving top-k sentences given a sentence from the dataset progress = tqdm.tqdm(unit="docs", total=len(sent2idx)) for idx in range(len(sentences)): sentence_embedding = embeddings[idx] cos_scores = util.cos_sim(sentence_embedding, embeddings)[0] cos_scores = cos_scores.cpu() progress.update(1) #We use torch.topk to find the highest 5 scores top_results = torch.topk(cos_scores, k=top_k+1) for score, iid in zip(top_results[0], top_results[1]): if iid != idx and (iid, idx) not in duplicates: silver_data.append((sentences[idx], sentences[iid])) duplicates.add((idx,iid)) progress.reset() progress.close() logging.info("Length of silver_dataset generated: {}".format(len(silver_data))) logging.info("Step 2.2: Label STSbenchmark (silver dataset) with cross-encoder: {}".format(model_name)) cross_encoder = CrossEncoder(cross_encoder_path) silver_scores = cross_encoder.predict(silver_data) # All model predictions should be between [0,1] assert all(0.0 <= score <= 1.0 for score in silver_scores) ############################################################################################ # # Step 3: Train bi-encoder model with both STSbenchmark and labeled AllNlI - Augmented SBERT # ############################################################################################ logging.info("Step 3: Train bi-encoder: {} with STSbenchmark (gold + silver dataset)".format(model_name)) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark gold and silver train dataset") silver_samples = list(InputExample(texts=[data[0], data[1]], label=score) for \ data, score in zip(silver_data, silver_scores)) train_dataloader = DataLoader(gold_samples + silver_samples, shuffle=True, batch_size=batch_size) train_loss = losses.CosineSimilarityLoss(model=bi_encoder) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training. warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the bi-encoder model bi_encoder.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=bi_encoder_path ) ################################################################################# # # Evaluate cross-encoder and Augmented SBERT performance on STS benchmark dataset # ################################################################################# # load the stored augmented-sbert model bi_encoder = SentenceTransformer(bi_encoder_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') test_evaluator(bi_encoder, output_path=bi_encoder_path)