File size: 9,688 Bytes
2359bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
"""
The script shows how to train Augmented SBERT (In-Domain) strategy for STSb dataset with Semantic Search Sampling.
Methodology:
Three steps are followed for AugSBERT data-augmentation strategy with Semantic Search -
1. Fine-tune cross-encoder (BERT) on gold STSb dataset
2. Fine-tuned Cross-encoder is used to label on Sem. Search sampled unlabeled pairs (silver STSb dataset)
3. Bi-encoder (SBERT) is finally fine-tuned on both gold + silver STSb dataset
Citation: https://arxiv.org/abs/2010.08240
Usage:
python train_sts_indomain_semantic.py
OR
python train_sts_indomain_semantic.py pretrained_transformer_model_name top_k
python train_sts_indomain_semantic.py bert-base-uncased 3
"""
from torch.utils.data import DataLoader
from sentence_transformers import models, losses, util
from sentence_transformers import LoggingHandler, SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import InputExample
from datetime import datetime
import logging
import csv
import torch
import tqdm
import sys
import math
import gzip
import os
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
#You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base
model_name = sys.argv[1] if len(sys.argv) > 1 else 'bert-base-uncased'
top_k = int(sys.argv[2]) if len(sys.argv) > 2 else 3
batch_size = 16
num_epochs = 1
max_seq_length = 128
###### Read Datasets ######
#Check if dataset exsist. If not, download and extract it
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz'
if not os.path.exists(sts_dataset_path):
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)
cross_encoder_path = 'output/cross-encoder/stsb_indomain_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
bi_encoder_path = 'output/bi-encoder/stsb_augsbert_SS_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
###### Cross-encoder (simpletransformers) ######
logging.info("Loading cross-encoder model: {}".format(model_name))
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for cross-encoder model
cross_encoder = CrossEncoder(model_name, num_labels=1)
###### Bi-encoder (sentence-transformers) ######
logging.info("Loading bi-encoder model: {}".format(model_name))
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length)
# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
bi_encoder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
#####################################################
#
# Step 1: Train cross-encoder model with STSbenchmark
#
#####################################################
logging.info("Step 1: Train cross-encoder: {} with STSbenchmark (gold dataset)".format(model_name))
gold_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
for row in reader:
score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1
if row['split'] == 'dev':
dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
elif row['split'] == 'test':
test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
else:
#As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set
gold_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score))
gold_samples.append(InputExample(texts=[row['sentence2'], row['sentence1']], label=score))
# We wrap gold_samples (which is a List[InputExample]) into a pytorch DataLoader
train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size)
# We add an evaluator, which evaluates the performance during training
evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name='sts-dev')
# Configure the training
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the cross-encoder model
cross_encoder.fit(train_dataloader=train_dataloader,
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=cross_encoder_path)
############################################################################
#
# Step 2: Find silver pairs to label
#
############################################################################
#### Top k similar sentences to be retrieved ####
#### Larger the k, bigger the silver dataset ####
logging.info("Step 2.1: Generate STSbenchmark (silver dataset) using pretrained SBERT \
model and top-{} semantic search combinations".format(top_k))
silver_data = []
sentences = set()
for sample in gold_samples:
sentences.update(sample.texts)
sentences = list(sentences) # unique sentences
sent2idx = {sentence: idx for idx, sentence in enumerate(sentences)} # storing id and sentence in dictionary
duplicates = set((sent2idx[data.texts[0]], sent2idx[data.texts[1]]) for data in gold_samples) # not to include gold pairs of sentences again
# For simplicity we use a pretrained model
semantic_model_name = 'paraphrase-MiniLM-L6-v2'
semantic_search_model = SentenceTransformer(semantic_model_name)
logging.info("Encoding unique sentences with semantic search model: {}".format(semantic_model_name))
# encoding all unique sentences present in the training dataset
embeddings = semantic_search_model.encode(sentences, batch_size=batch_size, convert_to_tensor=True)
logging.info("Retrieve top-{} with semantic search model: {}".format(top_k, semantic_model_name))
# retrieving top-k sentences given a sentence from the dataset
progress = tqdm.tqdm(unit="docs", total=len(sent2idx))
for idx in range(len(sentences)):
sentence_embedding = embeddings[idx]
cos_scores = util.cos_sim(sentence_embedding, embeddings)[0]
cos_scores = cos_scores.cpu()
progress.update(1)
#We use torch.topk to find the highest 5 scores
top_results = torch.topk(cos_scores, k=top_k+1)
for score, iid in zip(top_results[0], top_results[1]):
if iid != idx and (iid, idx) not in duplicates:
silver_data.append((sentences[idx], sentences[iid]))
duplicates.add((idx,iid))
progress.reset()
progress.close()
logging.info("Length of silver_dataset generated: {}".format(len(silver_data)))
logging.info("Step 2.2: Label STSbenchmark (silver dataset) with cross-encoder: {}".format(model_name))
cross_encoder = CrossEncoder(cross_encoder_path)
silver_scores = cross_encoder.predict(silver_data)
# All model predictions should be between [0,1]
assert all(0.0 <= score <= 1.0 for score in silver_scores)
############################################################################################
#
# Step 3: Train bi-encoder model with both STSbenchmark and labeled AllNlI - Augmented SBERT
#
############################################################################################
logging.info("Step 3: Train bi-encoder: {} with STSbenchmark (gold + silver dataset)".format(model_name))
# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark gold and silver train dataset")
silver_samples = list(InputExample(texts=[data[0], data[1]], label=score) for \
data, score in zip(silver_data, silver_scores))
train_dataloader = DataLoader(gold_samples + silver_samples, shuffle=True, batch_size=batch_size)
train_loss = losses.CosineSimilarityLoss(model=bi_encoder)
logging.info("Read STSbenchmark dev dataset")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
# Configure the training.
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the bi-encoder model
bi_encoder.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=bi_encoder_path
)
#################################################################################
#
# Evaluate cross-encoder and Augmented SBERT performance on STS benchmark dataset
#
#################################################################################
# load the stored augmented-sbert model
bi_encoder = SentenceTransformer(bi_encoder_path)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(bi_encoder, output_path=bi_encoder_path) |