
Anlp Ass-4 1

Anlp Ass-4
Quantizing gpt2: Analysis of Time and
Memory Predictions
This document outlines various quantization techniques applied to the gpt2
model and analyzes their impact on memory usage, loss, and execution time,
focusing on explaining the observed trends in time and memory usage.

Part 1 - Manual Quantization

Baseline Model
*Memory Usage Forward Pass):** 838.78 MB

*Loss:** 26.38

*Time Taken:** 25.80 seconds

Full Model Quantization
*Model Memory Usage:** 294.25 MB Significantly reduced due to lower
precision weights)

*Memory Usage Forward Pass):** 1465.78 MB Increased due to
overhead introduced by quantization/dequantization operations)

*Loss:** 26.95 Slight increase compared to baseline, expected due to
reduced precision)

*Time Taken:** 21.86 seconds Faster than baseline potentially due to
smaller memory footprint during some operations, despite the overhead)

*Comment:** While model size decreases, forward pass memory
increases, suggesting overhead in managing quantized weights. Time
reduction might be due to faster memory access or specific optimizations
for quantized operations.

Full Model without lm_head Quantization

Anlp Ass-4 2

*Model Memory Usage:** 255.60 MB Further reduction compared to full
quantization)

*Memory Usage Forward Pass):** 1269.30 MB Lower than full model
quantization but still higher than baseline)

*Loss:** 26.41 Closer to baseline, suggesting lm_head might be more
sensitive to quantization)

*Time Taken:** 21.58 seconds Slightly faster than full quantization,
consistent with reduced memory footprint)

*Comment:** Excluding lm_head from quantization seems to balance
memory usage and accuracy. The forward pass memory still shows
overhead, but is lower than fully quantized, indicating lm_head contributes
to it.

Only lm_head Quantization
*Model Memory Usage:** 548.99 MB Larger than other quantizations,
lm_head might be a significant portion of the model)

*Memory Usage Forward Pass):** 1036.32 MB Lower than full
quantization, suggests other parts of the model contribute more to the
overhead)

*Loss:** 26.92 Similar to full quantization, confirms lm_head's sensitivity
to quantization)

*Time Taken:** 20.92 seconds Fastest among manual quantization,
possibly due to a better trade-off between quantization and computation)

*Comment:** Quantizing only lm_head provides a faster inference with
reasonable loss, but the model size is larger compared to other methods.
This indicates that the benefit of quantization depends on the specific part
of the model being targeted.

Last 4 Attention Layers Quantization
*Model Memory Usage:** 425.43 MB

Anlp Ass-4 3

*Memory Usage Forward Pass):** 983.95 MB Further reduction in
forward pass memory)

*Loss:** 26.40 Minimal impact on loss, suggesting these layers are less
sensitive to quantization)

*Time Taken:** 20.91 seconds Fastest among manual quantization,
consistent with lower forward pass memory)

*Comment:** Targeting specific layers like the last attention layers
provides significant memory and time improvements with minimal accuracy
loss, demonstrating that selective quantization can be effective.

Only q, k, v Matrices Quantization
*Model Memory Usage:** 425.43 MB

*Memory Usage Forward Pass):** 989.83 MB Slightly higher than last 4
attention layers, potentially due to different access patterns)

*Loss:** 26.40

*Time Taken:** 21.17 seconds Slightly slower than last 4 attention layers)

*Comment:** Quantizing only q, k, v matrices shows similar benefits as
quantizing last attention layers. The slight difference in time and memory
might be due to implementation details and data access patterns.

Part 2 - Quantization using bitsandbytes (bnb)

4-bit Quantization
*Model Memory Usage:** 134.06 MB Significantly smaller than manual
quantization due to 4-bit precision)

*Memory Usage Forward Pass):** 308.80 MB Significantly smaller than
all manual quantization, bnb is efficient)

*Loss:** 31.30 Larger increase in loss, indicating a trade-off between
memory and accuracy at 4-bit)

*Time Taken:** 16.43 seconds Fastest among all methods, due to highly
optimized bnb implementation and reduced memory footprint)

Anlp Ass-4 4

*Note:** `low_cpu_mem_usage` set to True.

*Comment:** bnb's 4-bit quantization offers substantial memory and time
savings, but at the cost of higher loss. This indicates its suitability for
scenarios where speed and memory are prioritized over accuracy.

8-bit Quantization
*Model Memory Usage:** 176.53 MB Larger than 4-bit but still smaller
than manual quantization)

*Memory Usage Forward Pass):** 494.14 MB Larger than 4-bit but
smaller than manual quantization)

*Loss:** 26.56 Close to baseline, 8-bit offers a good balance between
accuracy and memory)

*Time Taken:** 29.28 seconds Slower than 4-bit but faster than the
baseline, indicating 8-bit trade-offs)

*Note:** `low_cpu_mem_usage` set to True.

*Comment:** 8-bit quantization with bnb provides a good balance,
reducing memory usage and improving speed compared to the baseline
while maintaining accuracy close to the original model.

4-bit NF4 Quantization
*Model Memory Usage:** 134.06 MB Same as 4-bit quantization, as
expected)

*Memory Usage Forward Pass):** 494.86 MB Higher than 4-bit, NF4
might introduce different overhead)

*Loss:** 28.38 Lower loss than 4-bit quantization, indicating NF4's better
accuracy)

*Time Taken:** 15.96 seconds Fastest among all methods, suggesting
NF4 is computationally efficient)

*Comment:** NF4 NormalFloat4 in bnb provides a better accuracy than
standard 4-bit quantization while maintaining similar speed benefits,
making it a good option for scenarios needing both efficiency and
reasonable accuracy.

General Comments on Time and Memory Trends

Anlp Ass-4 5

*Quantization Precision:** Lower precision (e.g., 4-bit) leads to smaller
model sizes but can increase loss.

*Quantization Overhead:** Introducing quantization and dequantization
operations can increase the memory footprint during the forward pass,
even if the model size is reduced.

*Implementation Efficiency:** Libraries like bnb are optimized for
quantized operations, leading to significant speed improvements and
potentially lower memory usage during inference.

*Selective Quantization:** Targeting specific parts of the model (e.g.,
certain layers or matrices) can provide a good balance between memory
reduction, speed improvement, and accuracy preservation.

*Data Movement:** Reduced memory footprint can lead to faster inference
due to reduced data movement between memory and processing units.

By understanding these factors, one can choose the appropriate quantization
strategy based on the specific requirements of the application, considering the
trade-offs between memory, speed, and accuracy.

