Update pipeline/test_pipeline.py
Browse files- pipeline/test_pipeline.py +63 -1
pipeline/test_pipeline.py
CHANGED
@@ -3,6 +3,8 @@ from datasets import load_dataset
|
|
3 |
from transformers.pipelines import pipeline
|
4 |
|
5 |
model_alias = "kotoba-tech/kotoba-whisper-v1.1"
|
|
|
|
|
6 |
pipe = pipeline(model=model_alias,
|
7 |
punctuator=True,
|
8 |
stable_ts=True,
|
@@ -19,4 +21,64 @@ for i in dataset:
|
|
19 |
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
20 |
)
|
21 |
pprint(prediction)
|
22 |
-
input()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers.pipelines import pipeline
|
4 |
|
5 |
model_alias = "kotoba-tech/kotoba-whisper-v1.1"
|
6 |
+
|
7 |
+
print("""### P + S ###""")
|
8 |
pipe = pipeline(model=model_alias,
|
9 |
punctuator=True,
|
10 |
stable_ts=True,
|
|
|
21 |
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
22 |
)
|
23 |
pprint(prediction)
|
24 |
+
input()
|
25 |
+
break
|
26 |
+
|
27 |
+
print("""### P ###""")
|
28 |
+
pipe = pipeline(model=model_alias,
|
29 |
+
punctuator=True,
|
30 |
+
stable_ts=False,
|
31 |
+
chunk_length_s=15,
|
32 |
+
batch_size=16,
|
33 |
+
trust_remote_code=True)
|
34 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
35 |
+
for i in dataset:
|
36 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
37 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
38 |
+
prediction = pipe(
|
39 |
+
i["audio"],
|
40 |
+
return_timestamps=True,
|
41 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
42 |
+
)
|
43 |
+
pprint(prediction)
|
44 |
+
break
|
45 |
+
|
46 |
+
print("""### S ###""")
|
47 |
+
pipe = pipeline(model=model_alias,
|
48 |
+
punctuator=False,
|
49 |
+
stable_ts=True,
|
50 |
+
chunk_length_s=15,
|
51 |
+
batch_size=16,
|
52 |
+
trust_remote_code=True)
|
53 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
54 |
+
for i in dataset:
|
55 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
56 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
57 |
+
prediction = pipe(
|
58 |
+
i["audio"],
|
59 |
+
return_timestamps=True,
|
60 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
61 |
+
)
|
62 |
+
pprint(prediction)
|
63 |
+
break
|
64 |
+
|
65 |
+
print("""### RAW ###""")
|
66 |
+
pipe = pipeline(model=model_alias,
|
67 |
+
punctuator=False,
|
68 |
+
stable_ts=False,
|
69 |
+
chunk_length_s=15,
|
70 |
+
batch_size=16,
|
71 |
+
trust_remote_code=True)
|
72 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
73 |
+
for i in dataset:
|
74 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
75 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
76 |
+
prediction = pipe(
|
77 |
+
i["audio"],
|
78 |
+
return_timestamps=True,
|
79 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
80 |
+
)
|
81 |
+
pprint(prediction)
|
82 |
+
input()
|
83 |
+
break
|
84 |
+
|