|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
try: |
|
from flash_attn import flash_attn_with_kvcache |
|
except ImportError: |
|
flash_attn_with_kvcache = None |
|
|
|
try: |
|
from flash_attn.layers.rotary import RotaryEmbedding |
|
except ImportError: |
|
RotaryEmbedding = None |
|
|
|
try: |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
except ImportError: |
|
causal_conv1d_fn, causal_conv1d_update = None, None |
|
|
|
|
|
def _update_kv_cache(kv, inference_params, layer_idx): |
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" |
|
|
|
num_heads, head_dim = kv.shape[-2:] |
|
assert layer_idx in inference_params.key_value_memory_dict |
|
kv_cache, _ = inference_params.key_value_memory_dict[layer_idx] |
|
|
|
batch_start = inference_params.batch_size_offset |
|
batch_end = batch_start + kv.shape[0] |
|
sequence_start = inference_params.seqlen_offset |
|
sequence_end = sequence_start + kv.shape[1] |
|
assert batch_end <= kv_cache.shape[0] |
|
assert sequence_end <= kv_cache.shape[1] |
|
assert kv_cache is not None |
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv |
|
return kv_cache[batch_start:batch_end, :sequence_end, ...] |
|
|
|
|
|
class MHA(nn.Module): |
|
"""Multi-head self-attention and cross-attention""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
num_heads_kv=None, |
|
head_dim=None, |
|
mlp_dim=0, |
|
qkv_proj_bias=True, |
|
out_proj_bias=True, |
|
softmax_scale=None, |
|
causal=False, |
|
layer_idx=None, |
|
d_conv=0, |
|
rotary_emb_dim=0, |
|
rotary_emb_base=10000.0, |
|
rotary_emb_interleaved=False, |
|
device=None, |
|
dtype=None, |
|
) -> None: |
|
""" |
|
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads. |
|
return_residual: whether to return the input x along with the output. This is for |
|
performance reason: for post-norm architecture, returning the input allows us |
|
to fuse the backward of nn.Linear with the residual connection. |
|
""" |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.layer_idx = layer_idx |
|
self.d_conv = d_conv |
|
self.rotary_emb_dim = rotary_emb_dim |
|
self.softmax_scale = softmax_scale |
|
self.causal = causal |
|
|
|
self.num_heads = num_heads |
|
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads |
|
assert ( |
|
self.num_heads % self.num_heads_kv == 0 |
|
), "num_heads must be divisible by num_heads_kv" |
|
if head_dim is None: |
|
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads" |
|
self.head_dim = head_dim if head_dim is not None else self.embed_dim // num_heads |
|
self.mlp_dim = math.ceil(mlp_dim / 256) * 256 |
|
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv) |
|
out_dim = self.head_dim * self.num_heads |
|
|
|
if self.rotary_emb_dim > 0: |
|
assert RotaryEmbedding is not None, "rotary requires flash_attn to be installed" |
|
self.rotary_emb = RotaryEmbedding( |
|
self.rotary_emb_dim, |
|
base=rotary_emb_base, |
|
interleaved=rotary_emb_interleaved, |
|
device=device, |
|
) |
|
|
|
self.in_proj = nn.Linear(embed_dim, qkv_dim + self.mlp_dim, bias=qkv_proj_bias, **factory_kwargs) |
|
if self.d_conv > 0: |
|
self.conv1d = nn.Conv1d( |
|
qkv_dim, qkv_dim, kernel_size=self.d_conv, padding=self.d_conv - 1, groups=qkv_dim, |
|
**factory_kwargs |
|
) |
|
self.out_proj = nn.Linear(out_dim + self.mlp_dim // 2, embed_dim, bias=out_proj_bias, **factory_kwargs) |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None): |
|
dtype = self.out_proj.weight.dtype if dtype is None else dtype |
|
device = self.out_proj.weight.device |
|
if self.d_conv > 0: |
|
conv_state = torch.zeros( |
|
batch_size, self.conv1d.weight.shape[0], self.d_conv, device=device, dtype=dtype |
|
) |
|
else: |
|
conv_state = None |
|
kv_cache = torch.empty( |
|
batch_size, max_seqlen, 2, self.num_heads_kv, self.head_dim, dtype=dtype, device=device, |
|
) |
|
return kv_cache, conv_state |
|
|
|
def _update_kv_cache(self, kv, inference_params): |
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" |
|
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor" |
|
return _update_kv_cache(kv, inference_params, self.layer_idx) |
|
|
|
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params): |
|
""" |
|
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention. |
|
q: (batch_size, seqlen_q, nheads, head_dim) |
|
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim) |
|
""" |
|
assert inference_params is not None and inference_params.seqlen_offset > 0 |
|
if self.rotary_emb_dim > 0: |
|
self.rotary_emb._update_cos_sin_cache( |
|
inference_params.max_seqlen, device=q.device, dtype=q.dtype |
|
) |
|
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached |
|
else: |
|
rotary_cos, rotary_sin = None, None |
|
batch = q.shape[0] |
|
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] |
|
kv_cache = kv_cache[:batch] |
|
cache_seqlens = ( |
|
inference_params.lengths_per_sample[:batch] |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
assert flash_attn_with_kvcache is not None, "flash_attn must be installed" |
|
context = flash_attn_with_kvcache( |
|
q, |
|
kv_cache[:, :, 0], |
|
kv_cache[:, :, 1], |
|
kv[:, :, 0], |
|
kv[:, :, 1], |
|
rotary_cos=rotary_cos, |
|
rotary_sin=rotary_sin, |
|
cache_seqlens=cache_seqlens, |
|
softmax_scale=self.softmax_scale, |
|
causal=self.causal, |
|
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False, |
|
) |
|
return context |
|
|
|
def _update_kvcache_attention(self, q, kv, inference_params): |
|
"""Write kv to inference_params, then do attention""" |
|
if ( |
|
inference_params.seqlen_offset == 0 |
|
or flash_attn_with_kvcache is None |
|
): |
|
|
|
kv = self._update_kv_cache(kv, inference_params) |
|
k, v = kv.unbind(dim=-3) |
|
k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_heads_kv) |
|
v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_heads_kv) |
|
return F.scaled_dot_product_attention( |
|
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=self.causal, scale=self.softmax_scale |
|
).transpose(1, 2) |
|
else: |
|
batch = q.shape[0] |
|
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] |
|
kv_cache = kv_cache[:batch] |
|
cache_seqlens = ( |
|
inference_params.lengths_per_sample[:batch] |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
return flash_attn_with_kvcache( |
|
q, |
|
kv_cache[:, :, 0], |
|
kv_cache[:, :, 1], |
|
kv[:, :, 0], |
|
kv[:, :, 1], |
|
cache_seqlens=cache_seqlens, |
|
softmax_scale=self.softmax_scale, |
|
causal=self.causal, |
|
) |
|
|
|
def forward(self, x, inference_params=None): |
|
""" |
|
Arguments: |
|
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if |
|
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total |
|
is the is the sum of the sequence lengths in the batch. |
|
inference_params: for generation. Adapted from Megatron-LM (and Apex) |
|
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470 |
|
""" |
|
if inference_params is not None and self.layer_idx not in inference_params.key_value_memory_dict: |
|
inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache( |
|
x.shape[0], inference_params.max_seqlen, dtype=x.dtype |
|
) |
|
seqlen_offset = ( |
|
0 |
|
if inference_params is None |
|
else ( |
|
inference_params.lengths_per_sample |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
) |
|
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None |
|
qkv = self.in_proj(x) |
|
if self.mlp_dim > 0: |
|
qkv, x_mlp = qkv.split([qkv.shape[-1] - self.mlp_dim, self.mlp_dim], dim=-1) |
|
x_mlp_up, x_mlp_gate = x_mlp.chunk(2, dim=-1) |
|
x_mlp = x_mlp_up * F.silu(x_mlp_gate) |
|
if self.d_conv > 0: |
|
|
|
if (inference_params is None or inference_params.seqlen_offset == 0): |
|
if causal_conv1d_fn is None: |
|
qkv = rearrange( |
|
self.conv1d(rearrange(qkv, "b s d -> b d s"))[..., :-(self.d_conv - 1)], "b d s -> b s d" |
|
).contiguous() |
|
else: |
|
qkv = causal_conv1d_fn( |
|
qkv.transpose(1, 2), |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias |
|
).transpose(1, 2) |
|
if inference_params is not None: |
|
_, conv_state = inference_params.key_value_memory_dict[self.layer_idx] |
|
|
|
|
|
qkv_t = rearrange(qkv, "b l d -> b d l") |
|
conv_state.copy_(F.pad(qkv_t, (self.d_conv - qkv_t.shape[-1], 0))) |
|
else: |
|
_, conv_state = inference_params.key_value_memory_dict[self.layer_idx] |
|
assert qkv.shape[1] == 1, "Only support decoding with 1 token at a time for now" |
|
qkv = qkv.squeeze(1) |
|
|
|
if causal_conv1d_update is None: |
|
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) |
|
conv_state[:, :, -1] = qkv |
|
qkv = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) |
|
if self.conv1d.bias is not None: |
|
qkv = qkv + self.conv1d.bias |
|
else: |
|
qkv = causal_conv1d_update( |
|
qkv, |
|
conv_state, |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias |
|
) |
|
qkv = qkv.unsqueeze(1) |
|
q, kv = qkv.split([self.num_heads * self.head_dim, self.num_heads_kv * 2 * self.head_dim], dim=-1) |
|
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) |
|
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) |
|
if ( |
|
inference_params is None |
|
or inference_params.seqlen_offset == 0 |
|
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0) |
|
): |
|
if self.rotary_emb_dim > 0: |
|
q, kv = self.rotary_emb( |
|
q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen |
|
) |
|
if inference_params is None: |
|
k, v = kv.unbind(dim=-3) |
|
k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_heads_kv) |
|
v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_heads_kv) |
|
context = F.scaled_dot_product_attention( |
|
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=self.causal, scale=self.softmax_scale |
|
).transpose(1, 2) |
|
else: |
|
context = self._update_kvcache_attention(q, kv, inference_params) |
|
else: |
|
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params) |
|
context = rearrange(context, "... h d -> ... (h d)") |
|
if self.mlp_dim > 0: |
|
context = torch.cat([context, x_mlp], dim=-1) |
|
out = self.out_proj(context) |
|
return out |
|
|