|
|
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange, repeat |
|
|
|
try: |
|
from causal_conv1d import causal_conv1d_fn |
|
except ImportError: |
|
causal_conv1d_fn = None |
|
|
|
try: |
|
from ..ops.triton.layernorm_gated import RMSNorm as RMSNormGated, LayerNorm |
|
except ImportError: |
|
RMSNormGated, LayerNorm = None, None |
|
|
|
from ..ops.triton.ssd_combined import mamba_chunk_scan_combined |
|
from ..ops.triton.ssd_combined import mamba_split_conv1d_scan_combined |
|
|
|
|
|
class Mamba2Simple(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
d_state=64, |
|
d_conv=4, |
|
conv_init=None, |
|
expand=2, |
|
headdim=128, |
|
ngroups=1, |
|
A_init_range=(1, 16), |
|
dt_min=0.001, |
|
dt_max=0.1, |
|
dt_init_floor=1e-4, |
|
dt_limit=(0.0, float("inf")), |
|
learnable_init_states=False, |
|
activation="swish", |
|
bias=False, |
|
conv_bias=True, |
|
|
|
chunk_size=256, |
|
use_mem_eff_path=True, |
|
layer_idx=None, |
|
device=None, |
|
dtype=None, |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.d_model = d_model |
|
self.d_state = d_state |
|
self.d_conv = d_conv |
|
self.conv_init = conv_init |
|
self.expand = expand |
|
self.d_inner = self.expand * self.d_model |
|
self.headdim = headdim |
|
self.ngroups = ngroups |
|
assert self.d_inner % self.headdim == 0 |
|
self.nheads = self.d_inner // self.headdim |
|
self.dt_limit = dt_limit |
|
self.learnable_init_states = learnable_init_states |
|
self.activation = activation |
|
self.chunk_size = chunk_size |
|
self.use_mem_eff_path = use_mem_eff_path |
|
self.layer_idx = layer_idx |
|
|
|
|
|
d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads |
|
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=bias, **factory_kwargs) |
|
|
|
conv_dim = self.d_inner + 2 * self.ngroups * self.d_state |
|
self.conv1d = nn.Conv1d( |
|
in_channels=conv_dim, |
|
out_channels=conv_dim, |
|
bias=conv_bias, |
|
kernel_size=d_conv, |
|
groups=conv_dim, |
|
padding=d_conv - 1, |
|
**factory_kwargs, |
|
) |
|
if self.conv_init is not None: |
|
nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init) |
|
|
|
|
|
if self.learnable_init_states: |
|
self.init_states = nn.Parameter( |
|
torch.zeros(self.nheads, self.headdim, self.d_state, **factory_kwargs) |
|
) |
|
self.init_states._no_weight_decay = True |
|
|
|
self.act = nn.SiLU() |
|
|
|
|
|
dt = torch.exp( |
|
torch.rand(self.nheads, **factory_kwargs) |
|
* (math.log(dt_max) - math.log(dt_min)) |
|
+ math.log(dt_min) |
|
) |
|
dt = torch.clamp(dt, min=dt_init_floor) |
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
self.dt_bias = nn.Parameter(inv_dt) |
|
|
|
|
|
self.dt_bias._no_weight_decay = True |
|
|
|
|
|
assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0] |
|
A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_( |
|
*A_init_range |
|
) |
|
A_log = torch.log(A).to(dtype=dtype) |
|
self.A_log = nn.Parameter(A_log) |
|
|
|
self.A_log._no_weight_decay = True |
|
|
|
|
|
self.D = nn.Parameter(torch.ones(self.nheads, device=device)) |
|
self.D._no_weight_decay = True |
|
|
|
|
|
assert RMSNormGated is not None |
|
self.norm = RMSNormGated( |
|
self.d_inner, eps=1e-5, norm_before_gate=False, **factory_kwargs |
|
) |
|
|
|
self.out_proj = nn.Linear( |
|
self.d_inner, self.d_model, bias=bias, **factory_kwargs |
|
) |
|
|
|
def forward(self, u, seq_idx=None): |
|
""" |
|
u: (B, L, D) |
|
Returns: same shape as u |
|
""" |
|
batch, seqlen, dim = u.shape |
|
|
|
zxbcdt = self.in_proj(u) |
|
A = -torch.exp(self.A_log) |
|
initial_states = ( |
|
repeat(self.init_states, "... -> b ...", b=batch) |
|
if self.learnable_init_states |
|
else None |
|
) |
|
dt_limit_kwargs = ( |
|
{} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit) |
|
) |
|
|
|
if self.use_mem_eff_path: |
|
|
|
out = mamba_split_conv1d_scan_combined( |
|
zxbcdt, |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias, |
|
self.dt_bias, |
|
A, |
|
D=self.D, |
|
chunk_size=self.chunk_size, |
|
seq_idx=seq_idx, |
|
activation=self.activation, |
|
rmsnorm_weight=self.norm.weight, |
|
rmsnorm_eps=self.norm.eps, |
|
outproj_weight=self.out_proj.weight, |
|
outproj_bias=self.out_proj.bias, |
|
headdim=self.headdim, |
|
ngroups=self.ngroups, |
|
norm_before_gate=False, |
|
initial_states=initial_states, |
|
**dt_limit_kwargs, |
|
) |
|
else: |
|
z, xBC, dt = torch.split( |
|
zxbcdt, |
|
[ |
|
self.d_inner, |
|
self.d_inner + 2 * self.ngroups * self.d_state, |
|
self.nheads, |
|
], |
|
dim=-1, |
|
) |
|
dt = F.softplus(dt + self.dt_bias) |
|
assert self.activation in ["silu", "swish"] |
|
|
|
|
|
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]: |
|
xBC = self.act( |
|
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2) |
|
) |
|
xBC = xBC[:, :seqlen, :] |
|
else: |
|
xBC = causal_conv1d_fn( |
|
x=xBC.transpose(1, 2), |
|
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
bias=self.conv1d.bias, |
|
activation=self.activation, |
|
).transpose(1, 2) |
|
|
|
|
|
|
|
x, B, C = torch.split( |
|
xBC, |
|
[ |
|
self.d_inner, |
|
self.ngroups * self.d_state, |
|
self.ngroups * self.d_state, |
|
], |
|
dim=-1, |
|
) |
|
y = mamba_chunk_scan_combined( |
|
rearrange(x, "b l (h p) -> b l h p", p=self.headdim), |
|
dt, |
|
A, |
|
rearrange(B, "b l (g n) -> b l g n", g=self.ngroups), |
|
rearrange(C, "b l (g n) -> b l g n", g=self.ngroups), |
|
chunk_size=self.chunk_size, |
|
D=self.D, |
|
z=None, |
|
seq_idx=seq_idx, |
|
initial_states=initial_states, |
|
**dt_limit_kwargs, |
|
) |
|
y = rearrange(y, "b l h p -> b l (h p)") |
|
|
|
|
|
y = self.norm(y, z) |
|
out = self.out_proj(y) |
|
return out |
|
|