# Copyright (c) 2025, Tri Dao import math from functools import partial from typing import Optional, Tuple, Union import torch from torch import Tensor from einops import rearrange, repeat # from flash_attn.ops.triton.rotary import apply_rotary from ..ops.triton.rotary import apply_rotary def rotate_half(x, interleaved=False): if not interleaved: x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) else: x1, x2 = x[..., ::2], x[..., 1::2] return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2) def apply_rotary_emb_torch(x, cos, sin, interleaved=False): """ x: (batch_size, seqlen, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2) """ ro_dim = cos.shape[-1] * 2 assert ro_dim <= x.shape[-1] cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)") sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)") return torch.cat( [x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]], dim=-1, ) class ApplyRotaryEmb(torch.autograd.Function): @staticmethod def forward( ctx, x, cos, sin, interleaved=False, inplace=False, seqlen_offsets: Union[int, Tensor] = 0, cu_seqlens: Optional[Tensor] = None, max_seqlen: Optional[int] = None, ): out = apply_rotary( x, cos, sin, seqlen_offsets=seqlen_offsets, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, interleaved=interleaved, inplace=inplace, ) if isinstance(seqlen_offsets, int): ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward ctx.seqlen_offsets = seqlen_offsets else: ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets) ctx.seqlen_offsets = None ctx.interleaved = interleaved ctx.inplace = inplace ctx.max_seqlen = max_seqlen return out if not inplace else x @staticmethod def backward(ctx, do): seqlen_offsets = ctx.seqlen_offsets if seqlen_offsets is None: cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors else: cos, sin, cu_seqlens = ctx.saved_tensors dx = apply_rotary( do, cos, sin, seqlen_offsets=seqlen_offsets, cu_seqlens=cu_seqlens, max_seqlen=ctx.max_seqlen, interleaved=ctx.interleaved, inplace=ctx.inplace, conjugate=True, ) return dx, None, None, None, None, None, None, None def apply_rotary_emb( x, cos, sin, interleaved=False, inplace=False, seqlen_offsets: Union[int, Tensor] = 0, cu_seqlens: Optional[Tensor] = None, max_seqlen: Optional[int] = None, ): """ Arguments: x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None else (total_seqlen, nheads, headdim) cos, sin: (seqlen_rotary, rotary_dim / 2) interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style). inplace: if True, apply rotary embedding in-place. seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount. Most commonly used in inference when we have KV cache. cu_seqlens: (batch + 1,) or None max_seqlen: int Return: out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None else (total_seqlen, nheads, headdim) rotary_dim must be <= headdim Apply rotary embedding to the first rotary_dim of x. """ return ApplyRotaryEmb.apply( x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen ) # For backward compatibility apply_rotary_emb_func = apply_rotary_emb def _apply_rotary_emb_qkv( qkv, cos, sin, cos_k=None, sin_k=None, interleaved=False, inplace=False, conjugate=False, seqlen_offsets: Union[int, Tensor] = 0, num_heads_q: Optional[int] = None, ): apply_rotary_fn = partial( apply_rotary, interleaved=interleaved, inplace=inplace, conjugate=conjugate, seqlen_offsets=seqlen_offsets ) if cos_k is None and sin_k is None and qkv.is_contiguous(): # Call 1 kernel instead of 2 kernels # We need qkv to be contiguous so that when we reshape to combine (3, nheads) # dimensions, we get the same tensor if qkv.dim() == 5: batch, seqlen, three, nheads, headdim = qkv.shape assert three == 3 # qk = rearrange(qkv[:, :, :2], "b s t h d -> b s (t h) d") qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim) qk = apply_rotary_fn(qk, cos, sin) else: assert qkv.dim() == 4 assert num_heads_q is not None num_heads_k = (qkv.shape[2] - num_heads_q) // 2 assert qkv.shape[2] == num_heads_q + 2 * num_heads_k qk = qkv[:, :, :num_heads_q + num_heads_k] qk = apply_rotary_fn(qk, cos, sin) if not inplace: if qkv.dim() == 5: qkv = torch.cat([rearrange(qk, "b s (t h) d -> b s t h d", t=2), qkv[:, :, 2:]], dim=2) else: qkv = torch.cat([qk, qkv[:, :, num_heads_q + num_heads_k :]], dim=2) else: cos_k = cos if cos_k is None else cos_k sin_k = sin if sin_k is None else sin_k if qkv.dim() == 5: batch, seqlen, three, nheads, headdim = qkv.shape assert three == 3 q, k = qkv[:, :, 0], qkv[:, :, 1] else: assert qkv.dim() == 4 assert num_heads_q is not None num_heads_k = (qkv.shape[2] - num_heads_q) // 2 assert qkv.shape[2] == num_heads_q + 2 * num_heads_k q, k = qkv[:, :, :num_heads_q], qkv[:, :, num_heads_q : num_heads_q + num_heads_k] q = apply_rotary_fn(q, cos, sin) k = apply_rotary_fn(k, cos_k, sin_k) if not inplace: if qkv.dim() == 5: qkv = torch.stack([q, k, qkv[:, :, 2]], dim=2) else: qkv = torch.cat([q, k, qkv[:, :, num_heads_q + num_heads_k:]], dim=2) return qkv class ApplyRotaryEmbQKV_(torch.autograd.Function): @staticmethod def forward( ctx, qkv, cos, sin, cos_k=None, sin_k=None, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0, num_heads_q: Optional[int] = None, ): # apply_rotary_emb_qkv_inplace( qkv = _apply_rotary_emb_qkv( qkv, cos, sin, cos_k, sin_k, interleaved=interleaved, inplace=True, seqlen_offsets=seqlen_offsets, num_heads_q=num_heads_q, ) if isinstance(seqlen_offsets, int): ctx.save_for_backward(cos, sin, cos_k, sin_k) ctx.seqlen_offsets = seqlen_offsets else: ctx.save_for_backward(cos, sin, cos_k, sin_k, seqlen_offsets) ctx.seqlen_offsets = None ctx.interleaved = interleaved ctx.num_heads_q = num_heads_q return qkv @staticmethod def backward(ctx, dqkv): seqlen_offsets = ctx.seqlen_offsets if seqlen_offsets is None: cos, sin, cos_k, sin_k, seqlen_offsets = ctx.saved_tensors else: cos, sin, cos_k, sin_k = ctx.saved_tensors dqkv = _apply_rotary_emb_qkv( dqkv, cos, sin, cos_k, sin_k, interleaved=ctx.interleaved, inplace=True, seqlen_offsets=seqlen_offsets, num_heads_q=ctx.num_heads_q, conjugate=True, ) return dqkv, None, None, None, None, None, None, None def apply_rotary_emb_qkv_( qkv, cos, sin, cos_k=None, sin_k=None, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0, num_heads_q: Optional[int] = None, ): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, headdim) or (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim). If qkv has shape (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim) (e.g. MQA / GQA), then num_heads_q must be provided. cos, sin: (seqlen, rotary_dim / 2) cos_k, sin_k: (seqlen, rotary_dim / 2), optional interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style). seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount. Most commonly used in inference when we have KV cache. Return: qkv: (batch_size, seqlen, 3, nheads, headdim) or (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim) rotary_dim must be <= headdim Apply rotary embedding *inplace* to the first rotary_dim of Q and K. """ return ApplyRotaryEmbQKV_.apply( qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, num_heads_q ) class ApplyRotaryEmbKV_(torch.autograd.Function): @staticmethod def forward(ctx, kv, cos, sin, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0): batch, seqlen, two, nheads, headdim = kv.shape assert two == 2 k = kv[:, :, 0] apply_rotary( k, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved, inplace=True ) if isinstance(seqlen_offsets, int): ctx.save_for_backward(cos, sin) # Can't save int with save_for_backward ctx.seqlen_offsets = seqlen_offsets else: ctx.save_for_backward(cos, sin, seqlen_offsets) ctx.seqlen_offsets = None ctx.interleaved = interleaved return kv @staticmethod def backward(ctx, dkv): seqlen_offsets = ctx.seqlen_offsets if seqlen_offsets is None: cos, sin, seqlen_offsets = ctx.saved_tensors else: cos, sin = ctx.saved_tensors apply_rotary( dkv[:, :, 0], cos, sin, seqlen_offsets=seqlen_offsets, interleaved=ctx.interleaved, inplace=True, conjugate=True, ) return dkv, None, None, None, None apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply def apply_rotary_emb_kv_( kv, cos, sin, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0, ): """ Arguments: kv: (batch_size, seqlen, 2, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style). seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount. Most commonly used in inference when we have KV cache. Return: kv: (batch_size, seqlen, 2, nheads, headdim) rotary_dim must be <= headdim Apply rotary embedding *inplace* to the first rotary_dim of K. """ return ApplyRotaryEmbKV_.apply(kv, cos, sin, interleaved, seqlen_offsets) class RotaryEmbedding(torch.nn.Module): """ The rotary position embeddings from RoFormer_ (Su et. al). A crucial insight from the method is that the query and keys are transformed by rotation matrices which depend on the relative positions. Other implementations are available in the Rotary Transformer repo_ and in GPT-NeoX_, GPT-NeoX was an inspiration .. _RoFormer: https://arxiv.org/abs/2104.09864 .. _repo: https://github.com/ZhuiyiTechnology/roformer .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554). A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96 Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py """ def __init__( self, dim: int, base=10000.0, interleaved=False, scale_base=None, device=None, ): """ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style). """ super().__init__() self.dim = dim self.base = float(base) # Generate and save the inverse frequency buffer (non trainable) inv_freq = self._compute_inv_freq(device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.interleaved = interleaved self.scale_base = scale_base scale = ( (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) if scale_base is not None else None ) self.register_buffer("scale", scale, persistent=False) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None def _compute_inv_freq(self, device=None): return 1.0 / ( self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim) ) def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): # Reset the tables if the sequence length has changed, # if we're on a new device (possibly due to tracing for instance), # or if we're switching from inference mode to training if ( seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype or (self.training and self._cos_cached.is_inference()) ): self._seq_len_cached = seqlen # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16 # And the output of arange can be quite large, so bf16 would lose a lot of precision. t = torch.arange(seqlen, device=device, dtype=torch.float32) # We want fp32 here as well since inv_freq will be multiplied with t, and the output # will be large. Having it in bf16 will lose a lot of precision and cause the # cos & sin output to change significantly. # We want to recompute self.inv_freq if it was not loaded in fp32 if self.inv_freq.dtype != torch.float32: inv_freq = self._compute_inv_freq(device=device) else: inv_freq = self.inv_freq # Don't do einsum, it converts fp32 to bf16 under AMP # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, inv_freq) if self.scale is None: self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) else: power = ( torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 ) / self.scale_base scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") # We want the multiplication by scale to happen in fp32 self._cos_cached = (torch.cos(freqs) * scale).to(dtype) self._sin_cached = (torch.sin(freqs) * scale).to(dtype) self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) def forward( self, qkv: torch.Tensor, kv: Optional[torch.Tensor] = None, seqlen_offset: Union[int, torch.Tensor] = 0, max_seqlen: Optional[int] = None, num_heads_q: Optional[int] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ qkv: (batch, seqlen, 3, nheads, headdim) or (batch, seqlen, num_heads_q + 2 * num_heads_k, headdim) if kv is none, else it's just q of shape (batch, seqlen, nheads, headdim). If qkv has shape (batch, seqlen, num_heads_q + 2 * num_heads_k, headdim) (e.g. MQA / GQA), then num_heads_q must be provided. kv: (batch, seqlen, 2, nheads, headdim) seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount. Most commonly used in inference when we have KV cache. If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one should pass in max_seqlen, which will update the cos / sin cache up to that length. Apply rotary embedding *inplace* to qkv and / or kv. """ seqlen = qkv.shape[1] if max_seqlen is not None: self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype) elif isinstance(seqlen_offset, int): self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype) if kv is None: return apply_rotary_emb_qkv_( qkv, self._cos_cached, self._sin_cached, self._cos_k_cached if self.scale is not None else None, self._sin_k_cached if self.scale is not None else None, interleaved=self.interleaved, seqlen_offsets=seqlen_offset, num_heads_q=num_heads_q, ) else: q = qkv q = apply_rotary_emb_func( q, self._cos_cached, self._sin_cached, interleaved=self.interleaved, inplace=True, seqlen_offsets=seqlen_offset, ) kv = apply_rotary_emb_kv_( kv, self._cos_cached if self.scale is None else self._cos_k_cached, self._sin_cached if self.scale is None else self._sin_k_cached, interleaved=self.interleaved, seqlen_offsets=seqlen_offset, ) return q, kv