|
|
|
|
|
|
|
from functools import partial |
|
|
|
import torch.nn as nn |
|
from einops import rearrange |
|
from torch import _assert |
|
from torch.nn.modules.utils import _pair |
|
|
|
try: |
|
from flash_attn.ops.fused_dense import FusedDense |
|
except ImportError: |
|
FusedDense = None |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
norm_layer=None, |
|
flatten=True, |
|
bias=True, |
|
fused_bias_fc=False, |
|
): |
|
super().__init__() |
|
img_size = _pair(img_size) |
|
patch_size = _pair(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
self.flatten = flatten |
|
if fused_bias_fc and FusedDense is None: |
|
raise ImportError("fused_dense is not installed") |
|
|
|
linear_cls = nn.Linear if not fused_bias_fc or not bias else FusedDense |
|
self.proj = linear_cls(in_chans * patch_size[0] * patch_size[1], embed_dim, bias=bias) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
_, _, H, W = x.shape |
|
_assert( |
|
H == self.img_size[0], |
|
f"Input image height ({H}) doesn't match model ({self.img_size[0]}).", |
|
) |
|
_assert( |
|
W == self.img_size[1], |
|
f"Input image width ({W}) doesn't match model ({self.img_size[1]}).", |
|
) |
|
x = self.proj( |
|
rearrange( |
|
x, |
|
"b c (h p1) (w p2) -> b h w (c p1 p2)", |
|
p1=self.patch_size[0], |
|
p2=self.patch_size[1], |
|
) |
|
) |
|
if self.flatten: |
|
x = rearrange(x, "b h w c -> b (h w) c") |
|
x = self.norm(x) |
|
return x |
|
|