|
|
|
import torch |
|
import numpy as np |
|
|
|
|
|
class ScoreParams: |
|
|
|
def __init__(self, gap, match, mismatch): |
|
self.gap = gap |
|
self.match = match |
|
self.mismatch = mismatch |
|
|
|
def mis_match_char(self, x, y): |
|
if x != y: |
|
return self.mismatch |
|
else: |
|
return self.match |
|
|
|
|
|
def get_matrix(size_x, size_y, gap): |
|
matrix = [] |
|
for i in range(len(size_x) + 1): |
|
sub_matrix = [] |
|
for j in range(len(size_y) + 1): |
|
sub_matrix.append(0) |
|
matrix.append(sub_matrix) |
|
for j in range(1, len(size_y) + 1): |
|
matrix[0][j] = j * gap |
|
for i in range(1, len(size_x) + 1): |
|
matrix[i][0] = i * gap |
|
return matrix |
|
|
|
|
|
def get_matrix(size_x, size_y, gap): |
|
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32) |
|
matrix[0, 1:] = (np.arange(size_y) + 1) * gap |
|
matrix[1:, 0] = (np.arange(size_x) + 1) * gap |
|
return matrix |
|
|
|
|
|
def get_traceback_matrix(size_x, size_y): |
|
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32) |
|
matrix[0, 1:] = 1 |
|
matrix[1:, 0] = 2 |
|
matrix[0, 0] = 4 |
|
return matrix |
|
|
|
|
|
def global_align(x, y, score): |
|
matrix = get_matrix(len(x), len(y), score.gap) |
|
trace_back = get_traceback_matrix(len(x), len(y)) |
|
for i in range(1, len(x) + 1): |
|
for j in range(1, len(y) + 1): |
|
left = matrix[i, j - 1] + score.gap |
|
up = matrix[i - 1, j] + score.gap |
|
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1]) |
|
matrix[i, j] = max(left, up, diag) |
|
if matrix[i, j] == left: |
|
trace_back[i, j] = 1 |
|
elif matrix[i, j] == up: |
|
trace_back[i, j] = 2 |
|
else: |
|
trace_back[i, j] = 3 |
|
return matrix, trace_back |
|
|
|
|
|
def get_aligned_sequences(x, y, trace_back): |
|
x_seq = [] |
|
y_seq = [] |
|
i = len(x) |
|
j = len(y) |
|
mapper_y_to_x = [] |
|
while i > 0 or j > 0: |
|
if trace_back[i, j] == 3: |
|
x_seq.append(x[i - 1]) |
|
y_seq.append(y[j - 1]) |
|
i = i - 1 |
|
j = j - 1 |
|
mapper_y_to_x.append((j, i)) |
|
elif trace_back[i][j] == 1: |
|
x_seq.append('-') |
|
y_seq.append(y[j - 1]) |
|
j = j - 1 |
|
mapper_y_to_x.append((j, -1)) |
|
elif trace_back[i][j] == 2: |
|
x_seq.append(x[i - 1]) |
|
y_seq.append('-') |
|
i = i - 1 |
|
elif trace_back[i][j] == 4: |
|
break |
|
mapper_y_to_x.reverse() |
|
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64) |
|
|
|
|
|
def get_mapper(x: str, y: str, tokenizer, max_len=77): |
|
x_seq = tokenizer.encode(x) |
|
y_seq = tokenizer.encode(y) |
|
score = ScoreParams(0, 1, -1) |
|
matrix, trace_back = global_align(x_seq, y_seq, score) |
|
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1] |
|
alphas = torch.ones(max_len) |
|
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float() |
|
mapper = torch.zeros(max_len, dtype=torch.int64) |
|
mapper[:mapper_base.shape[0]] = mapper_base[:, 1] |
|
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq)) |
|
return mapper, alphas |
|
|
|
|
|
def get_refinement_mapper(prompts, tokenizer, max_len=77): |
|
mappers, alphas = [], [] |
|
for i in range(1, len(prompts)): |
|
mapper, alpha = get_mapper(prompts[i-1], prompts[i], tokenizer, max_len) |
|
mappers.append(mapper) |
|
alphas.append(alpha) |
|
return torch.stack(mappers), torch.stack(alphas) |
|
|
|
|
|
def get_word_inds(text: str, word_place: int, tokenizer): |
|
split_text = text.split(" ") |
|
if type(word_place) is str: |
|
word_place = [i for i, word in enumerate(split_text) if word_place == word] |
|
elif type(word_place) is int: |
|
word_place = [word_place] |
|
out = [] |
|
if len(word_place) > 0: |
|
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] |
|
cur_len, ptr = 0, 0 |
|
|
|
for i in range(len(words_encode)): |
|
cur_len += len(words_encode[i]) |
|
if ptr in word_place: |
|
out.append(i + 1) |
|
if cur_len >= len(split_text[ptr]): |
|
ptr += 1 |
|
cur_len = 0 |
|
return np.array(out) |
|
|
|
|
|
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77): |
|
words_x = x.split(' ') |
|
words_y = y.split(' ') |
|
if len(words_x) != len(words_y): |
|
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length" |
|
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.") |
|
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]] |
|
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace] |
|
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace] |
|
mapper = np.zeros((max_len, max_len)) |
|
i = j = 0 |
|
cur_inds = 0 |
|
while i < max_len and j < max_len: |
|
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i: |
|
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds] |
|
if len(inds_source_) == len(inds_target_): |
|
mapper[inds_source_, inds_target_] = 1 |
|
else: |
|
ratio = 1 / len(inds_target_) |
|
for i_t in inds_target_: |
|
mapper[inds_source_, i_t] = ratio |
|
cur_inds += 1 |
|
i += len(inds_source_) |
|
j += len(inds_target_) |
|
elif cur_inds < len(inds_source): |
|
mapper[i, j] = 1 |
|
i += 1 |
|
j += 1 |
|
else: |
|
mapper[j, j] = 1 |
|
i += 1 |
|
j += 1 |
|
|
|
return torch.from_numpy(mapper).float() |
|
|
|
|
|
def get_replacement_mapper(prompts, tokenizer, max_len=77): |
|
|
|
mappers = [] |
|
for i in range(1, len(prompts)): |
|
mapper = get_replacement_mapper_(prompts[i-1], prompts[i], tokenizer, max_len) |
|
mappers.append(mapper) |
|
return torch.stack(mappers) |
|
|