|
import PIL |
|
from PIL import Image |
|
from typing import Callable, List, Optional, Union, Tuple, AnyStr |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch.cuda.amp import custom_bwd, custom_fwd |
|
from torchvision import transforms |
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput |
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline |
|
|
|
from methods.token2attn.attn_control import AttentionStore |
|
from methods.token2attn.ptp_utils import text_under_image, view_images |
|
|
|
|
|
class Token2AttnMixinASDSSDXLPipeline(StableDiffusionXLPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion XL. |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPFeatureExtractor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
controller: AttentionStore = None, |
|
num_inference_steps: int = 50, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
denoising_end (`float`, *optional*): |
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the |
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a |
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image |
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
self.register_attention_control(controller) |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs(prompt, prompt_2, height, width, callback_steps) |
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
( |
|
text_embeddings, |
|
negative_text_embeddings, |
|
pooled_text_embeddings, |
|
negative_pooled_text_embeddings, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
try: |
|
num_channels_latents = self.unet.config.in_channels |
|
except Exception or Warning: |
|
num_channels_latents = self.unet.in_channels |
|
|
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
text_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
add_text_embeddings = pooled_text_embeddings |
|
add_time_ids = self._get_add_time_ids( |
|
original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0) |
|
add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0) |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) |
|
|
|
text_embeddings = text_embeddings.to(device) |
|
add_text_embeddings = add_text_embeddings.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
|
|
|
|
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1: |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids} |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=text_embeddings, |
|
added_cond_kwargs=added_cond_kwargs |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
latents = controller.step_callback(latents) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|
|
def encode2latents(self, |
|
image, |
|
batch_size, |
|
num_images_per_prompt, |
|
dtype, |
|
device, |
|
generator=None): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.text_encoder_2.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
if image.shape[1] == 4: |
|
init_latents = image |
|
else: |
|
|
|
if self.vae.config.force_upcast: |
|
image = image.float() |
|
self.vae.to(dtype=torch.float32) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
elif isinstance(generator, list): |
|
init_latents = [ |
|
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = self.vae.encode(image).latent_dist.sample(generator) |
|
|
|
if self.vae.config.force_upcast: |
|
self.vae.to(dtype) |
|
|
|
init_latents = init_latents.to(dtype) |
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
latents = init_latents |
|
|
|
return latents |
|
|
|
@staticmethod |
|
def S_aug(sketch: torch.Tensor, |
|
im_res: int = 1024, |
|
augments: str = "affine_contrast"): |
|
|
|
augment_list = [] |
|
if "affine" in augments: |
|
augment_list.append( |
|
transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5) |
|
) |
|
augment_list.append( |
|
transforms.RandomResizedCrop(im_res, scale=(0.8, 0.8), ratio=(1.0, 1.0)) |
|
) |
|
if "contrast" in augments: |
|
|
|
augment_list.append( |
|
transforms.RandomAdjustSharpness(sharpness_factor=2) |
|
) |
|
augment_compose = transforms.Compose(augment_list) |
|
|
|
return augment_compose(sketch) |
|
|
|
def score_distillation_sampling(self, |
|
pred_rgb: torch.Tensor, |
|
crop_size: int, |
|
augments: str, |
|
prompt: Union[List, str], |
|
prompt_2: Optional[Union[List, str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
negative_prompt: Union[List, str] = None, |
|
negative_prompt_2: Optional[Union[List, str]] = None, |
|
guidance_scale: float = 100, |
|
as_latent: bool = False, |
|
grad_scale: float = 1, |
|
t_range: Union[List[float], Tuple[float]] = (0.05, 0.95), |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None): |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
|
|
num_train_timesteps = self.scheduler.config.num_train_timesteps |
|
min_step = int(num_train_timesteps * t_range[0]) |
|
max_step = int(num_train_timesteps * t_range[1]) |
|
alphas = self.scheduler.alphas_cumprod.to(self.device) |
|
|
|
num_images_per_prompt = 1 |
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
( |
|
text_embeddings, |
|
negative_text_embeddings, |
|
pooled_text_embeddings, |
|
negative_pooled_text_embeddings, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=self.device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
) |
|
|
|
|
|
pred_rgb_a = self.S_aug(pred_rgb, crop_size, augments) |
|
|
|
|
|
if as_latent: |
|
latents = F.interpolate(pred_rgb_a, (128, 128), mode='bilinear', align_corners=False) * 2 - 1 |
|
else: |
|
|
|
latents = self.encode2latents( |
|
pred_rgb_a, |
|
batch_size, |
|
num_images_per_prompt, |
|
text_embeddings.dtype, |
|
self.device |
|
) |
|
|
|
|
|
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device) |
|
|
|
|
|
add_text_embeddings = pooled_text_embeddings |
|
add_time_ids = self._get_add_time_ids( |
|
original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0) |
|
add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0) |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) |
|
|
|
text_embeddings = text_embeddings.to(self.device) |
|
add_text_embeddings = add_text_embeddings.to(self.device) |
|
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
noise = torch.randn_like(latents) |
|
latents_noisy = self.scheduler.add_noise(latents, noise, t) |
|
|
|
latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy |
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids} |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=text_embeddings, |
|
added_cond_kwargs=added_cond_kwargs |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond) |
|
|
|
|
|
w = (1 - alphas[t]) |
|
grad = grad_scale * w * (noise_pred - noise) |
|
grad = torch.nan_to_num(grad) |
|
|
|
|
|
loss = SpecifyGradient.apply(latents, grad) |
|
|
|
return loss, grad.mean() |
|
|
|
def register_attention_control(self, controller): |
|
attn_procs = {} |
|
cross_att_count = 0 |
|
for name in self.unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = self.unet.config.block_out_channels[-1] |
|
place_in_unet = "mid" |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] |
|
place_in_unet = "up" |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = self.unet.config.block_out_channels[block_id] |
|
place_in_unet = "down" |
|
else: |
|
continue |
|
cross_att_count += 1 |
|
attn_procs[name] = P2PCrossAttnProcessor( |
|
controller=controller, place_in_unet=place_in_unet |
|
) |
|
|
|
self.unet.set_attn_processor(attn_procs) |
|
controller.num_att_layers = cross_att_count |
|
|
|
@staticmethod |
|
def aggregate_attention(prompts, |
|
attention_store: AttentionStore, |
|
res: int, |
|
from_where: List[str], |
|
is_cross: bool, |
|
select: int): |
|
if isinstance(prompts, str): |
|
prompts = [prompts] |
|
assert isinstance(prompts, list) |
|
|
|
out = [] |
|
attention_maps = attention_store.get_average_attention() |
|
num_pixels = res ** 2 |
|
for location in from_where: |
|
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: |
|
if item.shape[1] == num_pixels: |
|
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] |
|
out.append(cross_maps) |
|
out = torch.cat(out, dim=0) |
|
out = out.sum(0) / out.shape[0] |
|
return out.cpu() |
|
|
|
def get_cross_attention(self, |
|
prompts, |
|
attention_store: AttentionStore, |
|
res: int, |
|
from_where: List[str], |
|
select: int = 0, |
|
save_path=None): |
|
tokens = self.tokenizer.encode(prompts[select]) |
|
decoder = self.tokenizer.decode |
|
|
|
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select) |
|
|
|
images = [] |
|
for i in range(len(tokens)): |
|
image = attention_maps[:, :, i] |
|
image = 255 * image / image.max() |
|
image = image.unsqueeze(-1).expand(*image.shape, 3) |
|
image = image.numpy().astype(np.uint8) |
|
image = np.array(Image.fromarray(image).resize((256, 256))) |
|
image = text_under_image(image, decoder(int(tokens[i]))) |
|
images.append(image) |
|
image_array = np.stack(images, axis=0) |
|
view_images(image_array, save_image=True, fp=save_path) |
|
|
|
return attention_maps, tokens |
|
|
|
def get_self_attention_comp(self, |
|
prompts, |
|
attention_store: AttentionStore, |
|
res: int, |
|
from_where: List[str], |
|
img_size: int = 224, |
|
max_com=10, |
|
select: int = 0, |
|
save_path: AnyStr = None): |
|
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, False, select) |
|
attention_maps = attention_maps.numpy().reshape((res ** 2, res ** 2)) |
|
|
|
u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True)) |
|
print(f"self-attention_maps: {attention_maps.shape}, " |
|
f"u: {u.shape}, " |
|
f"s: {s.shape}, " |
|
f"vh: {vh.shape}") |
|
|
|
images = [] |
|
vh_returns = [] |
|
for i in range(max_com): |
|
image = vh[i].reshape(res, res) |
|
image = (image - image.min()) / (image.max() - image.min()) |
|
image = 255 * image |
|
|
|
ret_ = Image.fromarray(image).resize((img_size, img_size), resample=PIL.Image.Resampling.BILINEAR) |
|
vh_returns.append(np.array(ret_)) |
|
|
|
image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8) |
|
image = Image.fromarray(image).resize((256, 256)) |
|
image = np.array(image) |
|
images.append(image) |
|
image_array = np.stack(images, axis=0) |
|
view_images(image_array, num_rows=max_com // 10, offset_ratio=0, |
|
save_image=True, fp=save_path / "self-attn-vh.png") |
|
|
|
return attention_maps, (u, s, vh), np.stack(vh_returns, axis=0) |
|
|
|
|
|
class P2PCrossAttnProcessor: |
|
|
|
def __init__(self, controller, place_in_unet): |
|
super().__init__() |
|
self.controller = controller |
|
self.place_in_unet = place_in_unet |
|
|
|
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
is_cross = encoder_hidden_states is not None |
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
|
|
|
|
self.controller(attention_probs, is_cross, self.place_in_unet) |
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class SpecifyGradient(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@custom_fwd |
|
def forward(ctx, input_tensor, gt_grad): |
|
ctx.save_for_backward(gt_grad) |
|
|
|
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype) |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, grad_scale): |
|
gt_grad, = ctx.saved_tensors |
|
gt_grad = gt_grad * grad_scale |
|
return gt_grad, None |
|
|