|
import torch |
|
import xml.etree.ElementTree as etree |
|
import numpy as np |
|
import diffvg |
|
import os |
|
import pydiffvg |
|
import svgpathtools |
|
import svgpathtools.parser |
|
import re |
|
import warnings |
|
import cssutils |
|
import logging |
|
import matplotlib.colors |
|
cssutils.log.setLevel(logging.ERROR) |
|
|
|
def remove_namespaces(s): |
|
""" |
|
{...} ... -> ... |
|
""" |
|
return re.sub('{.*}', '', s) |
|
|
|
def parse_style(s, defs): |
|
style_dict = {} |
|
for e in s.split(';'): |
|
key_value = e.split(':') |
|
if len(key_value) == 2: |
|
key = key_value[0].strip() |
|
value = key_value[1].strip() |
|
if key == 'fill' or key == 'stroke': |
|
|
|
|
|
value = parse_color(value, defs) |
|
style_dict[key] = value |
|
return style_dict |
|
|
|
def parse_hex(s): |
|
""" |
|
Hex to tuple |
|
""" |
|
s = s.lstrip('#') |
|
if len(s) == 3: |
|
s = s[0] + s[0] + s[1] + s[1] + s[2] + s[2] |
|
rgb = tuple(int(s[i:i+2], 16) for i in (0, 2, 4)) |
|
|
|
|
|
return torch.pow(torch.tensor([rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0]), 1.0) |
|
|
|
def parse_int(s): |
|
""" |
|
trim alphabets |
|
""" |
|
return int(float(''.join(i for i in s if (not i.isalpha())))) |
|
|
|
def parse_color(s, defs): |
|
if s is None: |
|
return None |
|
if isinstance(s, torch.Tensor): |
|
return s |
|
s = s.lstrip(' ') |
|
color = torch.tensor([0.0, 0.0, 0.0, 1.0]) |
|
if s[0] == '#': |
|
color[:3] = parse_hex(s) |
|
elif s[:3] == 'url': |
|
|
|
color = defs[s[4:-1].lstrip('#')] |
|
elif s == 'none': |
|
color = None |
|
elif s[:4] == 'rgb(': |
|
rgb = s[4:-1].split(',') |
|
color = torch.tensor([int(rgb[0]) / 255.0, int(rgb[1]) / 255.0, int(rgb[2]) / 255.0, 1.0]) |
|
elif s == 'none': |
|
return None |
|
else: |
|
try : |
|
rgba = matplotlib.colors.to_rgba(s) |
|
color = torch.tensor(rgba) |
|
except ValueError : |
|
warnings.warn('Unknown color command ' + s) |
|
return color |
|
|
|
|
|
def _parse_transform_substr(transform_substr): |
|
type_str, value_str = transform_substr.split('(') |
|
value_str = value_str.replace(',', ' ') |
|
values = list(map(float, filter(None, value_str.split(' ')))) |
|
|
|
transform = np.identity(3) |
|
if 'matrix' in type_str: |
|
transform[0:2, 0:3] = np.array([values[0:6:2], values[1:6:2]]) |
|
elif 'translate' in transform_substr: |
|
transform[0, 2] = values[0] |
|
if len(values) > 1: |
|
transform[1, 2] = values[1] |
|
elif 'scale' in transform_substr: |
|
x_scale = values[0] |
|
y_scale = values[1] if (len(values) > 1) else x_scale |
|
transform[0, 0] = x_scale |
|
transform[1, 1] = y_scale |
|
elif 'rotate' in transform_substr: |
|
angle = values[0] * np.pi / 180.0 |
|
if len(values) == 3: |
|
offset = values[1:3] |
|
else: |
|
offset = (0, 0) |
|
tf_offset = np.identity(3) |
|
tf_offset[0:2, 2:3] = np.array([[offset[0]], [offset[1]]]) |
|
tf_rotate = np.identity(3) |
|
tf_rotate[0:2, 0:2] = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) |
|
tf_offset_neg = np.identity(3) |
|
tf_offset_neg[0:2, 2:3] = np.array([[-offset[0]], [-offset[1]]]) |
|
|
|
transform = tf_offset.dot(tf_rotate).dot(tf_offset_neg) |
|
elif 'skewX' in transform_substr: |
|
transform[0, 1] = np.tan(values[0] * np.pi / 180.0) |
|
elif 'skewY' in transform_substr: |
|
transform[1, 0] = np.tan(values[0] * np.pi / 180.0) |
|
else: |
|
|
|
warnings.warn('Unknown SVG transform type: {0}'.format(type_str)) |
|
return transform |
|
|
|
def parse_transform(transform_str): |
|
""" |
|
Converts a valid SVG transformation string into a 3x3 matrix. |
|
If the string is empty or null, this returns a 3x3 identity matrix |
|
""" |
|
if not transform_str: |
|
return np.identity(3) |
|
elif not isinstance(transform_str, str): |
|
raise TypeError('Must provide a string to parse') |
|
|
|
total_transform = np.identity(3) |
|
transform_substrs = transform_str.split(')')[:-1] |
|
for substr in transform_substrs: |
|
total_transform = total_transform.dot(_parse_transform_substr(substr)) |
|
|
|
return torch.from_numpy(total_transform).type(torch.float32) |
|
|
|
def parse_linear_gradient(node, transform, defs): |
|
begin = torch.tensor([0.0, 0.0]) |
|
end = torch.tensor([0.0, 0.0]) |
|
offsets = [] |
|
stop_colors = [] |
|
|
|
for key in node.attrib: |
|
if remove_namespaces(key) == 'href': |
|
value = node.attrib[key] |
|
parent = defs[value.lstrip('#')] |
|
begin = parent.begin |
|
end = parent.end |
|
offsets = parent.offsets |
|
stop_colors = parent.stop_colors |
|
|
|
for attrib in node.attrib: |
|
attrib = remove_namespaces(attrib) |
|
if attrib == 'x1': |
|
begin[0] = float(node.attrib['x1']) |
|
elif attrib == 'y1': |
|
begin[1] = float(node.attrib['y1']) |
|
elif attrib == 'x2': |
|
end[0] = float(node.attrib['x2']) |
|
elif attrib == 'y2': |
|
end[1] = float(node.attrib['y2']) |
|
elif attrib == 'gradientTransform': |
|
transform = transform @ parse_transform(node.attrib['gradientTransform']) |
|
|
|
begin = transform @ torch.cat((begin, torch.ones([1]))) |
|
begin = begin / begin[2] |
|
begin = begin[:2] |
|
end = transform @ torch.cat((end, torch.ones([1]))) |
|
end = end / end[2] |
|
end = end[:2] |
|
|
|
for child in node: |
|
tag = remove_namespaces(child.tag) |
|
if tag == 'stop': |
|
offset = float(child.attrib['offset']) |
|
color = [0.0, 0.0, 0.0, 1.0] |
|
if 'stop-color' in child.attrib: |
|
c = parse_color(child.attrib['stop-color'], defs) |
|
color[:3] = [c[0], c[1], c[2]] |
|
if 'stop-opacity' in child.attrib: |
|
color[3] = float(child.attrib['stop-opacity']) |
|
if 'style' in child.attrib: |
|
style = parse_style(child.attrib['style'], defs) |
|
if 'stop-color' in style: |
|
c = parse_color(style['stop-color'], defs) |
|
color[:3] = [c[0], c[1], c[2]] |
|
if 'stop-opacity' in style: |
|
color[3] = float(style['stop-opacity']) |
|
offsets.append(offset) |
|
stop_colors.append(color) |
|
if isinstance(offsets, list): |
|
offsets = torch.tensor(offsets) |
|
if isinstance(stop_colors, list): |
|
stop_colors = torch.tensor(stop_colors) |
|
|
|
return pydiffvg.LinearGradient(begin, end, offsets, stop_colors) |
|
|
|
|
|
def parse_radial_gradient(node, transform, defs): |
|
begin = torch.tensor([0.0, 0.0]) |
|
end = torch.tensor([0.0, 0.0]) |
|
center = torch.tensor([0.0, 0.0]) |
|
radius = torch.tensor([0.0, 0.0]) |
|
offsets = [] |
|
stop_colors = [] |
|
|
|
for key in node.attrib: |
|
if remove_namespaces(key) == 'href': |
|
value = node.attrib[key] |
|
parent = defs[value.lstrip('#')] |
|
begin = parent.begin |
|
end = parent.end |
|
offsets = parent.offsets |
|
stop_colors = parent.stop_colors |
|
|
|
for attrib in node.attrib: |
|
attrib = remove_namespaces(attrib) |
|
if attrib == 'cx': |
|
center[0] = float(node.attrib['cx']) |
|
elif attrib == 'cy': |
|
center[1] = float(node.attrib['cy']) |
|
elif attrib == 'fx': |
|
radius[0] = float(node.attrib['fx']) |
|
elif attrib == 'fy': |
|
radius[1] = float(node.attrib['fy']) |
|
elif attrib == 'fr': |
|
radius[0] = float(node.attrib['fr']) |
|
radius[1] = float(node.attrib['fr']) |
|
elif attrib == 'gradientTransform': |
|
transform = transform @ parse_transform(node.attrib['gradientTransform']) |
|
|
|
|
|
center = transform @ torch.cat((center, torch.ones([1]))) |
|
center = center / center[2] |
|
center = center[:2] |
|
|
|
for child in node: |
|
tag = remove_namespaces(child.tag) |
|
if tag == 'stop': |
|
offset = float(child.attrib['offset']) |
|
color = [0.0, 0.0, 0.0, 1.0] |
|
if 'stop-color' in child.attrib: |
|
c = parse_color(child.attrib['stop-color'], defs) |
|
color[:3] = [c[0], c[1], c[2]] |
|
if 'stop-opacity' in child.attrib: |
|
color[3] = float(child.attrib['stop-opacity']) |
|
if 'style' in child.attrib: |
|
style = parse_style(child.attrib['style'], defs) |
|
if 'stop-color' in style: |
|
c = parse_color(style['stop-color'], defs) |
|
color[:3] = [c[0], c[1], c[2]] |
|
if 'stop-opacity' in style: |
|
color[3] = float(style['stop-opacity']) |
|
offsets.append(offset) |
|
stop_colors.append(color) |
|
if isinstance(offsets, list): |
|
offsets = torch.tensor(offsets) |
|
if isinstance(stop_colors, list): |
|
stop_colors = torch.tensor(stop_colors) |
|
|
|
return pydiffvg.RadialGradient(begin, end, offsets, stop_colors) |
|
|
|
def parse_stylesheet(node, transform, defs): |
|
|
|
sheet = cssutils.parseString(node.text) |
|
for rule in sheet: |
|
if hasattr(rule, 'selectorText') and hasattr(rule, 'style'): |
|
name = rule.selectorText |
|
if len(name) >= 2 and name[0] == '.': |
|
defs[name[1:]] = parse_style(rule.style.getCssText(), defs) |
|
return defs |
|
|
|
def parse_defs(node, transform, defs): |
|
for child in node: |
|
tag = remove_namespaces(child.tag) |
|
if tag == 'linearGradient': |
|
if 'id' in child.attrib: |
|
defs[child.attrib['id']] = parse_linear_gradient(child, transform, defs) |
|
elif tag == 'radialGradient': |
|
if 'id' in child.attrib: |
|
defs[child.attrib['id']] = parse_radial_gradient(child, transform, defs) |
|
elif tag == 'style': |
|
defs = parse_stylesheet(child, transform, defs) |
|
return defs |
|
|
|
def parse_common_attrib(node, transform, fill_color, defs): |
|
attribs = {} |
|
if 'class' in node.attrib: |
|
attribs.update(defs[node.attrib['class']]) |
|
attribs.update(node.attrib) |
|
|
|
name = '' |
|
if 'id' in node.attrib: |
|
name = node.attrib['id'] |
|
|
|
stroke_color = None |
|
stroke_width = torch.tensor(0.5) |
|
use_even_odd_rule = False |
|
|
|
new_transform = transform |
|
if 'transform' in attribs: |
|
new_transform = transform @ parse_transform(attribs['transform']) |
|
if 'fill' in attribs: |
|
fill_color = parse_color(attribs['fill'], defs) |
|
fill_opacity = 1.0 |
|
if 'fill-opacity' in attribs: |
|
fill_opacity *= float(attribs['fill-opacity']) |
|
if 'opacity' in attribs: |
|
fill_opacity *= float(attribs['opacity']) |
|
|
|
if isinstance(fill_color, torch.Tensor): |
|
fill_color[3] = fill_opacity |
|
|
|
if 'fill-rule' in attribs: |
|
if attribs['fill-rule'] == "evenodd": |
|
use_even_odd_rule = True |
|
elif attribs['fill-rule'] == "nonzero": |
|
use_even_odd_rule = False |
|
else: |
|
warnings.warn('Unknown fill-rule: {}'.format(attribs['fill-rule'])) |
|
|
|
if 'stroke' in attribs: |
|
stroke_color = parse_color(attribs['stroke'], defs) |
|
if 'stroke-opacity' in attribs: |
|
stroke_color[3] = float(attribs['stroke-opacity']) |
|
|
|
if 'stroke-width' in attribs: |
|
stroke_width = attribs['stroke-width'] |
|
if stroke_width[-2:] == 'px': |
|
stroke_width = stroke_width[:-2] |
|
stroke_width = torch.tensor(float(stroke_width) / 2.0) |
|
|
|
if 'style' in attribs: |
|
style = parse_style(attribs['style'], defs) |
|
if 'fill' in style: |
|
fill_color = parse_color(style['fill'], defs) |
|
fill_opacity = 1.0 |
|
if 'fill-opacity' in style: |
|
fill_opacity *= float(style['fill-opacity']) |
|
if 'opacity' in style: |
|
fill_opacity *= float(style['opacity']) |
|
if 'fill-rule' in style: |
|
if style['fill-rule'] == "evenodd": |
|
use_even_odd_rule = True |
|
elif style['fill-rule'] == "nonzero": |
|
use_even_odd_rule = False |
|
else: |
|
warnings.warn('Unknown fill-rule: {}'.format(style['fill-rule'])) |
|
|
|
if isinstance(fill_color, torch.Tensor): |
|
fill_color[3] = fill_opacity |
|
if 'stroke' in style: |
|
if style['stroke'] != 'none': |
|
stroke_color = parse_color(style['stroke'], defs) |
|
|
|
if isinstance(stroke_color, torch.Tensor): |
|
if 'stroke-opacity' in style: |
|
stroke_color[3] = float(style['stroke-opacity']) |
|
if 'opacity' in style: |
|
stroke_color[3] *= float(style['opacity']) |
|
if 'stroke-width' in style: |
|
stroke_width = style['stroke-width'] |
|
if stroke_width[-2:] == 'px': |
|
stroke_width = stroke_width[:-2] |
|
stroke_width = torch.tensor(float(stroke_width) / 2.0) |
|
|
|
if isinstance(fill_color, pydiffvg.LinearGradient): |
|
fill_color.begin = new_transform @ torch.cat((fill_color.begin, torch.ones([1]))) |
|
fill_color.begin = fill_color.begin / fill_color.begin[2] |
|
fill_color.begin = fill_color.begin[:2] |
|
fill_color.end = new_transform @ torch.cat((fill_color.end, torch.ones([1]))) |
|
fill_color.end = fill_color.end / fill_color.end[2] |
|
fill_color.end = fill_color.end[:2] |
|
if isinstance(stroke_color, pydiffvg.LinearGradient): |
|
stroke_color.begin = new_transform @ torch.cat((stroke_color.begin, torch.ones([1]))) |
|
stroke_color.begin = stroke_color.begin / stroke_color.begin[2] |
|
stroke_color.begin = stroke_color.begin[:2] |
|
stroke_color.end = new_transform @ torch.cat((stroke_color.end, torch.ones([1]))) |
|
stroke_color.end = stroke_color.end / stroke_color.end[2] |
|
stroke_color.end = stroke_color.end[:2] |
|
if 'filter' in style: |
|
print('*** WARNING ***: Ignoring filter for path with id "{}"'.format(name)) |
|
|
|
return new_transform, fill_color, stroke_color, stroke_width, use_even_odd_rule |
|
|
|
def is_shape(tag): |
|
return tag == 'path' or tag == 'polygon' or tag == 'line' or tag == 'circle' or tag == 'rect' |
|
|
|
def parse_shape(node, transform, fill_color, shapes, shape_groups, defs): |
|
tag = remove_namespaces(node.tag) |
|
new_transform, new_fill_color, stroke_color, stroke_width, use_even_odd_rule = \ |
|
parse_common_attrib(node, transform, fill_color, defs) |
|
if tag == 'path': |
|
d = node.attrib['d'] |
|
name = '' |
|
if 'id' in node.attrib: |
|
name = node.attrib['id'] |
|
force_closing = new_fill_color is not None |
|
paths = pydiffvg.from_svg_path(d, new_transform, force_closing) |
|
for idx, path in enumerate(paths): |
|
assert(path.points.shape[1] == 2) |
|
path.stroke_width = stroke_width |
|
path.source_id = name |
|
path.id = "{}-{}".format(name,idx) if len(paths)>1 else name |
|
prev_shapes_size = len(shapes) |
|
shapes = shapes + paths |
|
shape_ids = torch.tensor(list(range(prev_shapes_size, len(shapes)))) |
|
shape_groups.append(pydiffvg.ShapeGroup(\ |
|
shape_ids = shape_ids, |
|
fill_color = new_fill_color, |
|
stroke_color = stroke_color, |
|
use_even_odd_rule = use_even_odd_rule, |
|
id = name)) |
|
elif tag == 'polygon': |
|
name = '' |
|
if 'id' in node.attrib: |
|
name = node.attrib['id'] |
|
force_closing = new_fill_color is not None |
|
pts = node.attrib['points'].strip() |
|
pts = pts.split(' ') |
|
|
|
pts = [[float(y) for y in re.split(',| ', x)] for x in pts if x] |
|
pts = torch.tensor(pts, dtype=torch.float32).view(-1, 2) |
|
polygon = pydiffvg.Polygon(pts, force_closing) |
|
polygon.stroke_width = stroke_width |
|
shape_ids = torch.tensor([len(shapes)]) |
|
shapes.append(polygon) |
|
shape_groups.append(pydiffvg.ShapeGroup(\ |
|
shape_ids = shape_ids, |
|
fill_color = new_fill_color, |
|
stroke_color = stroke_color, |
|
use_even_odd_rule = use_even_odd_rule, |
|
shape_to_canvas = new_transform, |
|
id = name)) |
|
elif tag == 'line': |
|
x1 = float(node.attrib['x1']) |
|
y1 = float(node.attrib['y1']) |
|
x2 = float(node.attrib['x2']) |
|
y2 = float(node.attrib['y2']) |
|
p1 = torch.tensor([x1, y1]) |
|
p2 = torch.tensor([x2, y2]) |
|
points = torch.stack((p1, p2)) |
|
line = pydiffvg.Polygon(points, False) |
|
line.stroke_width = stroke_width |
|
shape_ids = torch.tensor([len(shapes)]) |
|
shapes.append(line) |
|
shape_groups.append(pydiffvg.ShapeGroup(\ |
|
shape_ids = shape_ids, |
|
fill_color = new_fill_color, |
|
stroke_color = stroke_color, |
|
use_even_odd_rule = use_even_odd_rule, |
|
shape_to_canvas = new_transform)) |
|
elif tag == 'circle': |
|
radius = float(node.attrib['r']) |
|
cx = float(node.attrib['cx']) |
|
cy = float(node.attrib['cy']) |
|
name = '' |
|
if 'id' in node.attrib: |
|
name = node.attrib['id'] |
|
center = torch.tensor([cx, cy]) |
|
circle = pydiffvg.Circle(radius = torch.tensor(radius), |
|
center = center) |
|
circle.stroke_width = stroke_width |
|
shape_ids = torch.tensor([len(shapes)]) |
|
shapes.append(circle) |
|
shape_groups.append(pydiffvg.ShapeGroup(\ |
|
shape_ids = shape_ids, |
|
fill_color = new_fill_color, |
|
stroke_color = stroke_color, |
|
use_even_odd_rule = use_even_odd_rule, |
|
shape_to_canvas = new_transform)) |
|
elif tag == 'ellipse': |
|
rx = float(node.attrib['rx']) |
|
ry = float(node.attrib['ry']) |
|
cx = float(node.attrib['cx']) |
|
cy = float(node.attrib['cy']) |
|
name = '' |
|
if 'id' in node.attrib: |
|
name = node.attrib['id'] |
|
center = torch.tensor([cx, cy]) |
|
circle = pydiffvg.Circle(radius = torch.tensor(radius), |
|
center = center) |
|
circle.stroke_width = stroke_width |
|
shape_ids = torch.tensor([len(shapes)]) |
|
shapes.append(circle) |
|
shape_groups.append(pydiffvg.ShapeGroup(\ |
|
shape_ids = shape_ids, |
|
fill_color = new_fill_color, |
|
stroke_color = stroke_color, |
|
use_even_odd_rule = use_even_odd_rule, |
|
shape_to_canvas = new_transform)) |
|
elif tag == 'rect': |
|
x = 0.0 |
|
y = 0.0 |
|
if x in node.attrib: |
|
x = float(node.attrib['x']) |
|
if y in node.attrib: |
|
y = float(node.attrib['y']) |
|
w = float(node.attrib['width']) |
|
h = float(node.attrib['height']) |
|
p_min = torch.tensor([x, y]) |
|
p_max = torch.tensor([x + w, x + h]) |
|
rect = pydiffvg.Rect(p_min = p_min, p_max = p_max) |
|
rect.stroke_width = stroke_width |
|
shape_ids = torch.tensor([len(shapes)]) |
|
shapes.append(rect) |
|
shape_groups.append(pydiffvg.ShapeGroup(\ |
|
shape_ids = shape_ids, |
|
fill_color = new_fill_color, |
|
stroke_color = stroke_color, |
|
use_even_odd_rule = use_even_odd_rule, |
|
shape_to_canvas = new_transform)) |
|
return shapes, shape_groups |
|
|
|
def parse_group(node, transform, fill_color, shapes, shape_groups, defs): |
|
if 'transform' in node.attrib: |
|
transform = transform @ parse_transform(node.attrib['transform']) |
|
if 'fill' in node.attrib: |
|
fill_color = parse_color(node.attrib['fill'], defs) |
|
for child in node: |
|
tag = remove_namespaces(child.tag) |
|
if is_shape(tag): |
|
shapes, shape_groups = parse_shape(\ |
|
child, transform, fill_color, shapes, shape_groups, defs) |
|
elif tag == 'g': |
|
shapes, shape_groups = parse_group(\ |
|
child, transform, fill_color, shapes, shape_groups, defs) |
|
return shapes, shape_groups |
|
|
|
def parse_scene(node): |
|
canvas_width = -1 |
|
canvas_height = -1 |
|
defs = {} |
|
shapes = [] |
|
shape_groups = [] |
|
fill_color = torch.tensor([0.0, 0.0, 0.0, 1.0]) |
|
transform = torch.eye(3) |
|
if 'viewBox' in node.attrib: |
|
view_box_array = node.attrib['viewBox'].split() |
|
canvas_width = parse_int(view_box_array[2]) |
|
canvas_height = parse_int(view_box_array[3]) |
|
else: |
|
if 'width' in node.attrib: |
|
canvas_width = parse_int(node.attrib['width']) |
|
else: |
|
print('Warning: Can\'t find canvas width.') |
|
if 'height' in node.attrib: |
|
canvas_height = parse_int(node.attrib['height']) |
|
else: |
|
print('Warning: Can\'t find canvas height.') |
|
for child in node: |
|
tag = remove_namespaces(child.tag) |
|
if tag == 'defs': |
|
defs = parse_defs(child, transform, defs) |
|
elif tag == 'style': |
|
defs = parse_stylesheet(child, transform, defs) |
|
elif tag == 'linearGradient': |
|
if 'id' in child.attrib: |
|
defs[child.attrib['id']] = parse_linear_gradient(child, transform, defs) |
|
elif tag == 'radialGradient': |
|
if 'id' in child.attrib: |
|
defs[child.attrib['id']] = parse_radial_gradient(child, transform, defs) |
|
elif is_shape(tag): |
|
shapes, shape_groups = parse_shape(\ |
|
child, transform, fill_color, shapes, shape_groups, defs) |
|
elif tag == 'g': |
|
shapes, shape_groups = parse_group(\ |
|
child, transform, fill_color, shapes, shape_groups, defs) |
|
return canvas_width, canvas_height, shapes, shape_groups |
|
|
|
def svg_to_scene(filename): |
|
""" |
|
Load from a SVG file and convert to PyTorch tensors. |
|
""" |
|
|
|
tree = etree.parse(filename) |
|
root = tree.getroot() |
|
cwd = os.getcwd() |
|
if (os.path.dirname(filename) != ''): |
|
os.chdir(os.path.dirname(filename)) |
|
ret = parse_scene(root) |
|
os.chdir(cwd) |
|
return ret |
|
|