|
from typing import Union, List, Dict, Any, cast |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.model_zoo import load_url as load_state_dict_from_url |
|
|
|
__all__ = [ |
|
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', |
|
'vgg19_bn', 'vgg19', |
|
] |
|
|
|
model_urls = { |
|
'vgg11': 'https://download.pytorch.org/models/vgg11-8a719046.pth', |
|
'vgg13': 'https://download.pytorch.org/models/vgg13-19584684.pth', |
|
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', |
|
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', |
|
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', |
|
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', |
|
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', |
|
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', |
|
} |
|
|
|
|
|
class VGG(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
features: nn.Module, |
|
num_classes: int = 1000, |
|
init_weights: bool = True |
|
) -> None: |
|
super(VGG, self).__init__() |
|
self.features = features |
|
self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) |
|
self.classifier = nn.Sequential( |
|
nn.Linear(512 * 7 * 7, 4096), |
|
nn.ReLU(True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 4096), |
|
nn.ReLU(True), |
|
nn.Dropout(), |
|
nn.Linear(4096, num_classes), |
|
) |
|
if init_weights: |
|
self._initialize_weights() |
|
|
|
def forward(self, x: torch.Tensor): |
|
feat = self.features(x) |
|
x = self.avgpool(feat) |
|
x = torch.flatten(x, 1) |
|
x = self.classifier(x) |
|
return feat, x |
|
|
|
def _initialize_weights(self) -> None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: |
|
layers: List[nn.Module] = [] |
|
in_channels = 3 |
|
for v in cfg: |
|
if v == 'M': |
|
layers += [nn.MaxPool2d(kernel_size=2, stride=2)] |
|
else: |
|
v = cast(int, v) |
|
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) |
|
if batch_norm: |
|
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] |
|
else: |
|
layers += [conv2d, nn.ReLU(inplace=True)] |
|
in_channels = v |
|
return nn.Sequential(*layers) |
|
|
|
|
|
cfgs: Dict[str, List[Union[str, int]]] = { |
|
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], |
|
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], |
|
} |
|
|
|
|
|
def _vgg(arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG: |
|
if pretrained: |
|
kwargs['init_weights'] = False |
|
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) |
|
if pretrained: |
|
state_dict = load_state_dict_from_url(model_urls[arch], |
|
progress=progress) |
|
model.load_state_dict(state_dict) |
|
return model |
|
|
|
|
|
def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 11-layer model (configuration "A") from |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg11_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 11-layer model (configuration "A") with batch normalization |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg13(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 13-layer model (configuration "B") |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg13_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 13-layer model (configuration "B") with batch normalization |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 16-layer model (configuration "D") |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg16_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 16-layer model (configuration "D") with batch normalization |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg16_bn', 'D', True, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg19(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 19-layer model (configuration "E") |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs) |
|
|
|
|
|
def vgg19_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: |
|
r"""VGG 19-layer model (configuration 'E') with batch normalization |
|
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs) |
|
|