|
from collections import namedtuple |
|
|
|
import torch |
|
import torchvision.models as tv_models |
|
|
|
|
|
class squeezenet(torch.nn.Module): |
|
def __init__(self, requires_grad=False, pretrained=True): |
|
super(squeezenet, self).__init__() |
|
pretrained_features = tv_models.squeezenet1_1(weights=pretrained).features |
|
self.slice1 = torch.nn.Sequential() |
|
self.slice2 = torch.nn.Sequential() |
|
self.slice3 = torch.nn.Sequential() |
|
self.slice4 = torch.nn.Sequential() |
|
self.slice5 = torch.nn.Sequential() |
|
self.slice6 = torch.nn.Sequential() |
|
self.slice7 = torch.nn.Sequential() |
|
self.N_slices = 7 |
|
for x in range(2): |
|
self.slice1.add_module(str(x), pretrained_features[x]) |
|
for x in range(2, 5): |
|
self.slice2.add_module(str(x), pretrained_features[x]) |
|
for x in range(5, 8): |
|
self.slice3.add_module(str(x), pretrained_features[x]) |
|
for x in range(8, 10): |
|
self.slice4.add_module(str(x), pretrained_features[x]) |
|
for x in range(10, 11): |
|
self.slice5.add_module(str(x), pretrained_features[x]) |
|
for x in range(11, 12): |
|
self.slice6.add_module(str(x), pretrained_features[x]) |
|
for x in range(12, 13): |
|
self.slice7.add_module(str(x), pretrained_features[x]) |
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X): |
|
h = self.slice1(X) |
|
h_relu1 = h |
|
h = self.slice2(h) |
|
h_relu2 = h |
|
h = self.slice3(h) |
|
h_relu3 = h |
|
h = self.slice4(h) |
|
h_relu4 = h |
|
h = self.slice5(h) |
|
h_relu5 = h |
|
h = self.slice6(h) |
|
h_relu6 = h |
|
h = self.slice7(h) |
|
h_relu7 = h |
|
vgg_outputs = namedtuple("SqueezeOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5', 'relu6', 'relu7']) |
|
out = vgg_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7) |
|
|
|
return out |
|
|
|
|
|
class alexnet(torch.nn.Module): |
|
def __init__(self, requires_grad=False, pretrained=True): |
|
super(alexnet, self).__init__() |
|
weights = tv_models.AlexNet_Weights.IMAGENET1K_V1 if pretrained else None |
|
alexnet_pretrained_features = tv_models.alexnet(weights=weights).features |
|
self.slice1 = torch.nn.Sequential() |
|
self.slice2 = torch.nn.Sequential() |
|
self.slice3 = torch.nn.Sequential() |
|
self.slice4 = torch.nn.Sequential() |
|
self.slice5 = torch.nn.Sequential() |
|
self.N_slices = 5 |
|
for x in range(2): |
|
self.slice1.add_module(str(x), alexnet_pretrained_features[x]) |
|
for x in range(2, 5): |
|
self.slice2.add_module(str(x), alexnet_pretrained_features[x]) |
|
for x in range(5, 8): |
|
self.slice3.add_module(str(x), alexnet_pretrained_features[x]) |
|
for x in range(8, 10): |
|
self.slice4.add_module(str(x), alexnet_pretrained_features[x]) |
|
for x in range(10, 12): |
|
self.slice5.add_module(str(x), alexnet_pretrained_features[x]) |
|
|
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X): |
|
h = self.slice1(X) |
|
h_relu1 = h |
|
h = self.slice2(h) |
|
h_relu2 = h |
|
h = self.slice3(h) |
|
h_relu3 = h |
|
h = self.slice4(h) |
|
h_relu4 = h |
|
h = self.slice5(h) |
|
h_relu5 = h |
|
alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5']) |
|
out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5) |
|
|
|
return out |
|
|
|
|
|
class vgg16(torch.nn.Module): |
|
def __init__(self, requires_grad=False, pretrained=True): |
|
super(vgg16, self).__init__() |
|
weights = tv_models.VGG16_Weights.IMAGENET1K_V1 if pretrained else None |
|
vgg_pretrained_features = tv_models.vgg16(weights=weights).features |
|
self.slice1 = torch.nn.Sequential() |
|
self.slice2 = torch.nn.Sequential() |
|
self.slice3 = torch.nn.Sequential() |
|
self.slice4 = torch.nn.Sequential() |
|
self.slice5 = torch.nn.Sequential() |
|
self.N_slices = 5 |
|
for x in range(4): |
|
self.slice1.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(4, 9): |
|
self.slice2.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(9, 16): |
|
self.slice3.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(16, 23): |
|
self.slice4.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(23, 30): |
|
self.slice5.add_module(str(x), vgg_pretrained_features[x]) |
|
|
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X): |
|
h = self.slice1(X) |
|
h_relu1_2 = h |
|
h = self.slice2(h) |
|
h_relu2_2 = h |
|
h = self.slice3(h) |
|
h_relu3_3 = h |
|
h = self.slice4(h) |
|
h_relu4_3 = h |
|
h = self.slice5(h) |
|
h_relu5_3 = h |
|
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) |
|
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) |
|
|
|
return out |
|
|
|
|
|
class resnet(torch.nn.Module): |
|
def __init__(self, requires_grad=False, pretrained=True, num=18): |
|
super(resnet, self).__init__() |
|
|
|
if num == 18: |
|
weights = tv_models.ResNet18_Weights.IMAGENET1K_V1 if pretrained else None |
|
self.net = tv_models.resnet18(weights=weights) |
|
elif num == 34: |
|
weights = tv_models.ResNet34_Weights.IMAGENET1K_V1 if pretrained else None |
|
self.net = tv_models.resnet34(weights=weights) |
|
elif num == 50: |
|
weights = tv_models.ResNet50_Weights.IMAGENET1K_V2 if pretrained else None |
|
self.net = tv_models.resnet50(weights=weights) |
|
elif num == 101: |
|
weights = tv_models.ResNet101_Weights.IMAGENET1K_V2 if pretrained else None |
|
self.net = tv_models.resnet101(weights=weights) |
|
elif num == 152: |
|
weights = tv_models.ResNet152_Weights.IMAGENET1K_V2 if pretrained else None |
|
self.net = tv_models.resnet152(weights=weights) |
|
self.N_slices = 5 |
|
|
|
if not requires_grad: |
|
for param in self.net.parameters(): |
|
param.requires_grad = False |
|
|
|
self.conv1 = self.net.conv1 |
|
self.bn1 = self.net.bn1 |
|
self.relu = self.net.relu |
|
self.maxpool = self.net.maxpool |
|
self.layer1 = self.net.layer1 |
|
self.layer2 = self.net.layer2 |
|
self.layer3 = self.net.layer3 |
|
self.layer4 = self.net.layer4 |
|
|
|
def forward(self, X): |
|
h = self.conv1(X) |
|
h = self.bn1(h) |
|
h = self.relu(h) |
|
h_relu1 = h |
|
h = self.maxpool(h) |
|
h = self.layer1(h) |
|
h_conv2 = h |
|
h = self.layer2(h) |
|
h_conv3 = h |
|
h = self.layer3(h) |
|
h_conv4 = h |
|
h = self.layer4(h) |
|
h_conv5 = h |
|
|
|
outputs = namedtuple("Outputs", ['relu1', 'conv2', 'conv3', 'conv4', 'conv5']) |
|
out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5) |
|
|
|
return out |
|
|