|
def accuracy(output, target, topk=(1,)): |
|
""" |
|
Computes the accuracy over the k top predictions for the specified values of k. |
|
|
|
Args |
|
output: logits or probs (num of batch, num of classes) |
|
target: (num of batch, 1) or (num of batch, ) |
|
topk: list of returned k |
|
|
|
refer: https://github.com/pytorch/examples/blob/master/imagenet/main.py |
|
""" |
|
maxK = max(topk) |
|
batch_size = target.size(0) |
|
|
|
_, pred = output.topk(k=maxK, dim=1, largest=True, sorted=True) |
|
pred = pred.t() |
|
|
|
|
|
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
|
res = [] |
|
for k in topk: |
|
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) |
|
res.append(correct_k.mul_(100.0 / batch_size)) |
|
return res |
|
|